» Articles » PMID: 33776557

Ligand-Controlled Reactivity and Cytotoxicity of Cyclometalated Rhodium(III) Complexes

Overview
Date 2021 Mar 29
PMID 33776557
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

We report the synthesis, characterisation and cytotoxicity of six cyclometalated rhodium(III) complexes [CpRh(C^N)Z], in which Cp = Cp*, Cp, or Cp, C^N = benzo[h]quinoline, and Z = chloride or pyridine. Three x-ray crystal structures showing the expected "piano-stool" configurations have been determined. The chlorido complexes hydrolysed faster in aqueous solution, also reacted preferentially with 9-ethyl guanine or glutathione compared to their pyridine analogues. The 1-biphenyl-2,3,4,5,-tetramethylcyclopentadienyl complex [CpRh(benzo[h]quinoline)Cl] () was the most efficient catalyst in coenzyme reduced nicotinamide adenine dinucleotide (NADH) oxidation to NAD and induced an elevated level of reactive oxygen species (ROS) in A549 human lung cancer cells. The pyridine complex [CpRh(benzo[h]quinoline)py] () was the most potent against A549 lung and A2780 ovarian cancer cell lines, being 5-fold more active than cisplatin towards A549 cells, and acted as a ROS scavenger. This work highlights a ligand-controlled strategy to modulate the reactivity and cytotoxicity of cyclometalated rhodium anticancer complexes.

Citing Articles

Half-Sandwich Rhodium Complexes with Releasable N-Donor Monodentate Ligands: Solution Chemical Properties and the Possibility for Acidosis Activation.

Meszaros J, Kandioller W, Spengler G, Prado-Roller A, Keppler B, Enyedy E Pharmaceutics. 2023; 15(2).

PMID: 36839678 PMC: 9964319. DOI: 10.3390/pharmaceutics15020356.


Systematic Study on the Cytotoxic Potency of Commonly Used Dimeric Metal Precursors in Human Cancer Cell Lines.

Geisler H, Harringer S, Wenisch D, Urban R, Jakupec M, Kandioller W ChemistryOpen. 2022; 11(7):e202200019.

PMID: 35212190 PMC: 9278098. DOI: 10.1002/open.202200019.


Transfer hydrogenation catalysis in cells.

Banerjee S, Sadler P RSC Chem Biol. 2021; 2(1):12-29.

PMID: 34458774 PMC: 8341873. DOI: 10.1039/d0cb00150c.


Metallodrugs are unique: opportunities and challenges of discovery and development.

Anthony E, Bolitho E, Bridgewater H, Carter O, Donnelly J, Imberti C Chem Sci. 2021; 11(48):12888-12917.

PMID: 34123239 PMC: 8163330. DOI: 10.1039/d0sc04082g.


Synthesis, Characterisation and In Vitro Anticancer Activity of Catalytically Active Indole-Based Half-Sandwich Complexes.

Soldevila-Barreda J, Fawibe K, Azmanova M, Rafols L, Pitto-Barry A, Eke U Molecules. 2020; 25(19).

PMID: 33022980 PMC: 7583056. DOI: 10.3390/molecules25194540.

References
1.
Novohradsky V, Liu Z, Vojtiskova M, Sadler P, Brabec V, Kasparkova J . Mechanism of cellular accumulation of an iridium(III) pentamethylcyclopentadienyl anticancer complex containing a C,N-chelating ligand. Metallomics. 2014; 6(3):682-90. DOI: 10.1039/c3mt00341h. View

2.
Gasser G, Ott I, Metzler-Nolte N . Organometallic anticancer compounds. J Med Chem. 2010; 54(1):3-25. PMC: 3018145. DOI: 10.1021/jm100020w. View

3.
Yang G, Wang W, Mok S, Wu C, Law B, Miao X . Selective Inhibition of Lysine-Specific Demethylase 5A (KDM5A) Using a Rhodium(III) Complex for Triple-Negative Breast Cancer Therapy. Angew Chem Int Ed Engl. 2018; 57(40):13091-13095. DOI: 10.1002/anie.201807305. View

4.
Su W, Luo Z, Dong S, Chen X, Xiao J, Peng B . Novel half-sandwich rhodium(III) and iridium(III) photosensitizers for dual chemo- and photodynamic therapy. Photodiagnosis Photodyn Ther. 2019; 26:448-454. DOI: 10.1016/j.pdpdt.2019.04.028. View

5.
Gupta G, Kumari P, Ryu J, Lee J, Mobin S, Lee C . Mitochondrial Localization of Highly Fluorescent and Photostable BODIPY-Based Ruthenium(II), Rhodium(III), and Iridium(III) Metal Complexes. Inorg Chem. 2019; 58(13):8587-8595. DOI: 10.1021/acs.inorgchem.9b00898. View