» Articles » PMID: 33741916

A Comprehensive Influenza Reporter Virus Panel for High-throughput Deep Profiling of Neutralizing Antibodies

Abstract

Broadly neutralizing antibodies (bnAbs) have been developed as potential countermeasures for seasonal and pandemic influenza. Deep characterization of these bnAbs and polyclonal sera provides pivotal understanding for influenza immunity and informs effective vaccine design. However, conventional virus neutralization assays require high-containment laboratories and are difficult to standardize and roboticize. Here, we build a panel of engineered influenza viruses carrying a reporter gene to replace an essential viral gene, and develop an assay using the panel for in-depth profiling of neutralizing antibodies. Replication of these viruses is restricted to cells expressing the missing viral gene, allowing it to be manipulated in a biosafety level 2 environment. We generate the neutralization profile of 24 bnAbs using a 55-virus panel encompassing the near-complete diversity of human H1N1 and H3N2, as well as pandemic subtype viruses. Our system offers in-depth profiling of influenza immunity, including the antibodies against the hemagglutinin stem, a major target of universal influenza vaccines.

Citing Articles

Generation of antigen-specific paired chain antibody sequences using large language models.

Wasdin P, Johnson N, Janke A, Held S, Marinov T, Jordaan G bioRxiv. 2025; .

PMID: 40027781 PMC: 11870394. DOI: 10.1101/2024.12.20.629482.


Glycan-reactive antibodies isolated from human HIV-1 vaccine trial participants show broad pathogen cross-reactivity.

Jamieson P, Shen X, Abu-Shmais A, Wasdin P, Janowska K, Edwards R bioRxiv. 2025; .

PMID: 39896680 PMC: 11785028. DOI: 10.1101/2025.01.17.633475.


Structural Convergence and Water-Mediated Substrate Mimicry Enable Broad Neuraminidase Inhibition by Human Antibodies.

Lederhofer J, Borst A, Nguyen L, Gillespie R, Williams C, Walker E bioRxiv. 2024; .

PMID: 39677750 PMC: 11642763. DOI: 10.1101/2024.11.27.625426.


Modulating the immunodominance hierarchy of immunoglobulin germline-encoded structural motifs targeting the influenza hemagglutinin stem.

Ataca S, Sangesland M, de Paiva Froes Rocha R, Torrents de la Pena A, Ronsard L, Boyoglu-Barnum S Cell Rep. 2024; 43(12):114990.

PMID: 39580804 PMC: 11672684. DOI: 10.1016/j.celrep.2024.114990.


Potent and broad HIV-1 neutralization in fusion peptide-primed SHIV-infected macaques.

Wang H, Cheng C, Dal Santo J, Shen C, Bylund T, Henry A Cell. 2024; 187(25):7214-7231.e23.

PMID: 39471811 PMC: 11645223. DOI: 10.1016/j.cell.2024.10.003.


References
1.
Coudeville L, Bailleux F, Riche B, Megas F, Andre P, Ecochard R . Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model. BMC Med Res Methodol. 2010; 10:18. PMC: 2851702. DOI: 10.1186/1471-2288-10-18. View

2.
Smith D, Lapedes A, de Jong J, Bestebroer T, Rimmelzwaan G, Osterhaus A . Mapping the antigenic and genetic evolution of influenza virus. Science. 2004; 305(5682):371-6. DOI: 10.1126/science.1097211. View

3.
Crowe J . Antibody Determinants of Influenza Immunity. J Infect Dis. 2019; 219(Suppl_1):S21-S29. PMC: 6452307. DOI: 10.1093/infdis/jiz010. View

4.
Zost S, Wu N, Hensley S, Wilson I . Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. J Infect Dis. 2018; 219(Suppl_1):S38-S45. PMC: 6452323. DOI: 10.1093/infdis/jiy696. View

5.
Ping J, Lopes T, Neumann G, Kawaoka Y . Development of high-yield influenza B virus vaccine viruses. Proc Natl Acad Sci U S A. 2016; 113(51):E8296-E8305. PMC: 5187690. DOI: 10.1073/pnas.1616530113. View