» Articles » PMID: 33741714

The Alx3 Gene Shapes the Zebrafish Neurocranium by Regulating Frontonasal Neural Crest Cell Differentiation Timing

Overview
Journal Development
Specialty Biology
Date 2021 Mar 20
PMID 33741714
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

During craniofacial development, different populations of cartilage- and bone-forming cells develop in precise locations in the head. Most of these cells are derived from pluripotent cranial neural crest cells and differentiate with distinct developmental timing and cellular morphologies. The mechanisms that divide neural crest cells into discrete populations are not fully understood. Here, we use single-cell RNA sequencing to transcriptomically define different populations of cranial neural crest cells. We discovered that the gene family encoding the Alx transcription factors is enriched in the frontonasal population of neural crest cells. Genetic mutant analyses indicate that alx3 functions to regulate the distinct differentiation timing and cellular morphologies among frontonasal neural crest cell subpopulations. This study furthers our understanding of how genes controlling developmental timing shape craniofacial skeletal elements.

Citing Articles

The Gq/11 family of Gα subunits is necessary and sufficient for lower jaw development.

Kanai S, Garcia C, Augustus M, Sharafeldeen S, Brooks E, Sucharov J bioRxiv. 2024; .

PMID: 39345358 PMC: 11430119. DOI: 10.1101/2024.09.17.611698.


Unraveling the transcriptomic landscape of eye migration and visual adaptations during flatfish metamorphosis.

Guerrero-Pena L, Suarez-Bregua P, Sanchez-Ruiloba L, Mendez-Martinez L, Garcia-Fernandez P, Tur R Commun Biol. 2024; 7(1):253.

PMID: 38429383 PMC: 10907633. DOI: 10.1038/s42003-024-05951-x.


TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway.

Nguyen T, Mitchell J, Kiel M, Kenny C, Li H, Jones K Development. 2023; 151(1).

PMID: 38063857 PMC: 10820886. DOI: 10.1242/dev.202095.


Craniofacial developmental biology in the single-cell era.

Tseng K, Crump J Development. 2023; 150(19).

PMID: 37812056 PMC: 10617621. DOI: 10.1242/dev.202077.


Linking Vertebrate Gene Duplications to the New Head Hypothesis.

Ray L, Medeiros D Biology (Basel). 2023; 12(9).

PMID: 37759612 PMC: 10525774. DOI: 10.3390/biology12091213.


References
1.
Depew M, Simpson C, Morasso M, Rubenstein J . Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat. 2005; 207(5):501-61. PMC: 1571560. DOI: 10.1111/j.1469-7580.2005.00487.x. View

2.
Uz E, Alanay Y, Aktas D, Vargel I, Gucer S, Tuncbilek G . Disruption of ALX1 causes extreme microphthalmia and severe facial clefting: expanding the spectrum of autosomal-recessive ALX-related frontonasal dysplasia. Am J Hum Genet. 2010; 86(5):789-96. PMC: 2869009. DOI: 10.1016/j.ajhg.2010.04.002. View

3.
Ding H, Clouthier D, Artinger K . Redundant roles of PRDM family members in zebrafish craniofacial development. Dev Dyn. 2012; 242(1):67-79. PMC: 4112576. DOI: 10.1002/dvdy.23895. View

4.
Dougherty M, Kamel G, Grimaldi M, Gfrerer L, Shubinets V, Ethier R . Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis. Development. 2012; 140(1):76-81. PMC: 6514306. DOI: 10.1242/dev.080473. View

5.
Beverdam A, Brouwer A, Reijnen M, Korving J, Meijlink F . Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice. Development. 2001; 128(20):3975-86. DOI: 10.1242/dev.128.20.3975. View