» Articles » PMID: 33737869

Connectivity and Functionality of the Globus Pallidus Externa Under Normal Conditions and Parkinson's Disease

Overview
Date 2021 Mar 19
PMID 33737869
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

The globus pallidus externa (GPe) functions as a central hub in the basal ganglia for processing motor and non-motor information through the creation of complex connections with the other basal ganglia nuclei and brain regions. Recently, with the adoption of sophisticated genetic tools, substantial advances have been made in understanding the distinct molecular, anatomical, electrophysiological, and functional properties of GPe neurons and non-neuronal cells. Impairments in dopamine transmission in the basal ganglia contribute to Parkinson's disease (PD), the most common movement disorder that severely affects the patients' life quality. Altered GPe neuron activity and synaptic connections have also been found in both PD patients and pre-clinical models. In this review, we will summarize the main findings on the composition, connectivity and functionality of different GPe cell populations and the potential GPe-related mechanisms of PD symptoms to better understand the cell type and circuit-specific roles of GPe in both normal and PD conditions.

Citing Articles

Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty.

Ging-Jehli N, Cavanagh J, Ahn M, Segar D, Asaad W, Frank M PLoS Biol. 2025; 23(1):e3002978.

PMID: 39847590 PMC: 11756759. DOI: 10.1371/journal.pbio.3002978.


Exploring habenular structural connectivity in Parkinson's disease: insights from 7 T MRI study.

Samanci B, Bayram A, Tan S, Wanders M, Michielse S, Kuijf M J Neurol. 2024; 272(1):8.

PMID: 39666152 DOI: 10.1007/s00415-024-12773-8.


Optogenetic Control of Dopamine Receptor 2 Reveals a Novel Aspect of Dopaminergic Neurotransmission in Motor Function.

Kim H, Park G, Shin H, Kwon D, Kim H, Baek I J Neurosci. 2024; 45(1).

PMID: 39562043 PMC: 11694400. DOI: 10.1523/JNEUROSCI.1473-24.2024.


A worldwide study of subcortical shape as a marker for clinical staging in Parkinson's disease.

Laansma M, Zhao Y, van Heese E, Bright J, Owens-Walton C, Al-Bachari S NPJ Parkinsons Dis. 2024; 10(1):223.

PMID: 39557903 PMC: 11574005. DOI: 10.1038/s41531-024-00825-9.


Arkypallidal neurons in the external globus pallidus can mediate inhibitory control by altering competition in the striatum.

Giossi C, Bahuguna J, Rubin J, Verstynen T, Vich C Proc Natl Acad Sci U S A. 2024; 121(47):e2408505121.

PMID: 39536079 PMC: 11588131. DOI: 10.1073/pnas.2408505121.


References
1.
Koshimizu Y, Fujiyama F, Nakamura K, Furuta T, Kaneko T . Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector. J Comp Neurol. 2013; 521(9):2125-46. DOI: 10.1002/cne.23277. View

2.
Economo M, Clack N, Lavis L, Gerfen C, Svoboda K, Myers E . A platform for brain-wide imaging and reconstruction of individual neurons. Elife. 2016; 5:e10566. PMC: 4739768. DOI: 10.7554/eLife.10566. View

3.
Vitek J, Zhang J, Hashimoto T, Russo G, Baker K . External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network. Exp Neurol. 2011; 233(1):581-6. PMC: 3536483. DOI: 10.1016/j.expneurol.2011.09.031. View

4.
Turski L, Klockgether T, Turski W, Schwarz M, Sontag K . Blockade of excitatory neurotransmission in the globus pallidus induces rigidity and akinesia in the rat: implications for excitatory neurotransmission in pathogenesis of Parkinson's diseases. Brain Res. 1990; 512(1):125-31. DOI: 10.1016/0006-8993(90)91180-o. View

5.
Ketzef M, Silberberg G . Differential Synaptic Input to External Globus Pallidus Neuronal Subpopulations In Vivo. Neuron. 2020; 109(3):516-529.e4. DOI: 10.1016/j.neuron.2020.11.006. View