Kang S, Yang M, Bennett A, Kang S, Lee S, Choi D
bioRxiv. 2025; .
PMID: 39990452
PMC: 11844423.
DOI: 10.1101/2025.02.10.637554.
Dong J, Hawes S, Wu J, Le W, Cai H
Front Neural Circuits. 2021; 15:645287.
PMID: 33737869
PMC: 7960779.
DOI: 10.3389/fncir.2021.645287.
Tomita N, Nakamura T, Sunden Y, Morita T
J Vet Med Sci. 2019; 82(1):68-76.
PMID: 31787662
PMC: 6983658.
DOI: 10.1292/jvms.19-0502.
Amita H, Kim H, Smith M, Gopal A, Hikosaka O
Eur J Neurosci. 2018; 49(5):712-725.
PMID: 29737578
PMC: 6492451.
DOI: 10.1111/ejn.13936.
Kim N, Choi M, Koo H, Park B, Han S, Cheong C
Exp Brain Res. 2017; 235(5):1617-1625.
PMID: 28265687
DOI: 10.1007/s00221-016-4864-5.
Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model.
Lindahl M, Hellgren Kotaleski J
eNeuro. 2017; 3(6).
PMID: 28101525
PMC: 5228592.
DOI: 10.1523/ENEURO.0156-16.2016.
Basal ganglia and cerebellar interconnectivity within the human thalamus.
Pelzer E, Melzer C, Timmermann L, von Cramon D, Tittgemeyer M
Brain Struct Funct. 2016; 222(1):381-392.
PMID: 27089884
PMC: 5225161.
DOI: 10.1007/s00429-016-1223-z.
The external globus pallidus: progress and perspectives.
Hegeman D, Hong E, Hernandez V, Chan C
Eur J Neurosci. 2016; 43(10):1239-65.
PMID: 26841063
PMC: 4874844.
DOI: 10.1111/ejn.13196.
Automatic target validation based on neuroscientific literature mining for tractography.
Vasques X, Richardet R, Hill S, Slater D, Chappelier J, Pralong E
Front Neuroanat. 2015; 9:66.
PMID: 26074781
PMC: 4445321.
DOI: 10.3389/fnana.2015.00066.
Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons.
Mamad O, Delaville C, Benjelloun W, Benazzouz A
PLoS One. 2015; 10(3):e0119152.
PMID: 25742005
PMC: 4350999.
DOI: 10.1371/journal.pone.0119152.
Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways.
Mastro K, Bouchard R, Holt H, Gittis A
J Neurosci. 2014; 34(6):2087-99.
PMID: 24501350
PMC: 3913864.
DOI: 10.1523/JNEUROSCI.4646-13.2014.
Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness.
Beatty J, Sylwestrak E, Cox C
Neuroscience. 2009; 162(1):155-73.
PMID: 19393292
PMC: 2743753.
DOI: 10.1016/j.neuroscience.2009.04.043.
Lesion of the centromedian thalamic nucleus in MPTP-treated monkeys.
Lanciego J, Rodriguez-Oroz M, Blesa F, Alvarez-Erviti L, Guridi J, Barroso-Chinea P
Mov Disord. 2008; 23(5):708-15.
PMID: 18175345
PMC: 4413905.
DOI: 10.1002/mds.21906.
Organization of the thalamic projections of the striopallidum of the dog brain.
Gorbachevskaya A, Chivileva O
Neurosci Behav Physiol. 2004; 34(5):519-24.
PMID: 15330294
DOI: 10.1023/b:neab.0000022641.44459.24.
Analysis of the morphological substrate for information processing in the pallidal nuclear complex of the dog brain in terms of the organizational characteristics of its afferent projections.
Chivileva O
Neurosci Behav Physiol. 2004; 34(3):271-6.
PMID: 15151181
DOI: 10.1023/b:neab.0000012806.87738.74.
Glutamic acid decarboxylase 67 mRNA regulation in two globus pallidus neuron populations by dopamine and the subthalamic nucleus.
Billings L, Marshall J
J Neurosci. 2004; 24(12):3094-103.
PMID: 15044549
PMC: 6729860.
DOI: 10.1523/JNEUROSCI.5118-03.2004.
Spatial organization of afferent thalamic projections to structures of the pallidum in the dog brain.
Gorbachevskaya A, Chivileva O
Neurosci Behav Physiol. 2002; 32(4):329-33.
PMID: 12243252
DOI: 10.1023/a:1015863707551.