6.
Rizzi G, Tan K
. Synergistic Nigral Output Pathways Shape Movement. Cell Rep. 2019; 27(7):2184-2198.e4.
DOI: 10.1016/j.celrep.2019.04.068.
View
7.
Evans R, Zhu M, Khaliq Z
. Dopamine Inhibition Differentially Controls Excitability of Substantia Nigra Dopamine Neuron Subpopulations through T-Type Calcium Channels. J Neurosci. 2017; 37(13):3704-3720.
PMC: 5373143.
DOI: 10.1523/JNEUROSCI.0117-17.2017.
View
8.
Liu D, Li W, Ma C, Zheng W, Yao Y, Tso C
. A common hub for sleep and motor control in the substantia nigra. Science. 2020; 367(6476):440-445.
DOI: 10.1126/science.aaz0956.
View
9.
Kang Y, Kitai S
. Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata. Brain Res. 1990; 535(1):79-95.
DOI: 10.1016/0006-8993(90)91826-3.
View
10.
Masini D, Kiehn O
. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun. 2022; 13(1):504.
PMC: 8791953.
DOI: 10.1038/s41467-022-28075-4.
View
11.
Kroeger D, Ferrari L, Petit G, Mahoney C, Fuller P, Arrigoni E
. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci. 2017; 37(5):1352-1366.
PMC: 5296799.
DOI: 10.1523/JNEUROSCI.1405-16.2016.
View
12.
Caggiano V, Leiras R, Goni-Erro H, Masini D, Bellardita C, Bouvier J
. Midbrain circuits that set locomotor speed and gait selection. Nature. 2018; 553(7689):455-460.
PMC: 5937258.
DOI: 10.1038/nature25448.
View
13.
Zhao P, Wang H, Li A, Sun Q, Jiang T, Li X
. The Mesoscopic Connectome of the Cholinergic Pontomesencephalic Tegmentum. Front Neuroanat. 2022; 16:843303.
PMC: 9152021.
DOI: 10.3389/fnana.2022.843303.
View
14.
Huerta-Ocampo I, Dautan D, Gut N, Khan B, Mena-Segovia J
. Whole-brain mapping of monosynaptic inputs to midbrain cholinergic neurons. Sci Rep. 2021; 11(1):9055.
PMC: 8079369.
DOI: 10.1038/s41598-021-88374-6.
View
15.
McElvain L, Chen Y, Moore J, Brigidi G, Bloodgood B, Lim B
. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron. 2021; 109(10):1721-1738.e4.
PMC: 8169061.
DOI: 10.1016/j.neuron.2021.03.017.
View
16.
Arkadir D, Morris G, Vaadia E, Bergman H
. Independent coding of movement direction and reward prediction by single pallidal neurons. J Neurosci. 2004; 24(45):10047-56.
PMC: 6730185.
DOI: 10.1523/JNEUROSCI.2583-04.2004.
View
17.
Kravitz A, Freeze B, Parker P, Kay K, Thwin M, Deisseroth K
. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010; 466(7306):622-6.
PMC: 3552484.
DOI: 10.1038/nature09159.
View
18.
Zhang S, Mena-Segovia J, Gut N
. Inhibitory Pedunculopontine Neurons Gate Dopamine-Mediated Motor Actions of Unsigned Valence. Curr Neuropharmacol. 2023; 22(9):1540-1550.
PMC: 11097985.
DOI: 10.2174/1570159X21666230911103520.
View
19.
French I, Muthusamy K
. A Review of the Pedunculopontine Nucleus in Parkinson's Disease. Front Aging Neurosci. 2018; 10:99.
PMC: 5933166.
DOI: 10.3389/fnagi.2018.00099.
View
20.
Dodson P, Larvin J, Duffell J, Garas F, Doig N, Kessaris N
. Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron. 2015; 86(2):501-13.
PMC: 4416107.
DOI: 10.1016/j.neuron.2015.03.007.
View