» Articles » PMID: 33734106

Quantitative Image Analysis for Tissue Biomarker Use: A White Paper From the Digital Pathology Association

Abstract

Tissue biomarkers have been of increasing utility for scientific research, diagnosing disease, and treatment response prediction. There has been a steady shift away from qualitative assessment toward providing more quantitative scores for these biomarkers. The application of quantitative image analysis has thus become an indispensable tool for in-depth tissue biomarker interrogation in these contexts. This white paper reviews current technologies being employed for quantitative image analysis, their application and pitfalls, regulatory framework demands, and guidelines established for promoting their safe adoption in clinical practice.

Citing Articles

Fully Automated Artificial Intelligence Solution for Human Epidermal Growth Factor Receptor 2 Immunohistochemistry Scoring in Breast Cancer: A Multireader Study.

Krishnamurthy S, Schnitt S, Vincent-Salomon A, Canas-Marques R, Colon E, Kantekure K JCO Precis Oncol. 2024; 8:e2400353.

PMID: 39393036 PMC: 11485213. DOI: 10.1200/PO.24.00353.


Development and validation of a clinical breast cancer tool for accurate prediction of recurrence.

Dhungana A, Vannier A, Zhao F, Freeman J, Saha P, Sullivan M NPJ Breast Cancer. 2024; 10(1):46.

PMID: 38879577 PMC: 11180107. DOI: 10.1038/s41523-024-00651-5.


SERS sensing for cancer biomarker: Approaches and directions.

Vazquez-Iglesias L, Stanfoca Casagrande G, Garcia-Lojo D, Leal L, Ngo T, Perez-Juste J Bioact Mater. 2024; 34:248-268.

PMID: 38260819 PMC: 10801148. DOI: 10.1016/j.bioactmat.2023.12.018.


Computational pathology in the identification of HER2-low breast cancer: Opportunities and challenges.

Brevet M, Li Z, Parwani A J Pathol Inform. 2023; 15:100343.

PMID: 38125925 PMC: 10730362. DOI: 10.1016/j.jpi.2023.100343.


Artificial intelligence-assisted digital pathology for non-alcoholic steatohepatitis: current status and future directions.

Ratziu V, Hompesch M, Petitjean M, Serdjebi C, Iyer J, Parwani A J Hepatol. 2023; 80(2):335-351.

PMID: 37879461 PMC: 11822446. DOI: 10.1016/j.jhep.2023.10.015.


References
1.
Zarella M, Bowman D, Aeffner F, Farahani N, Xthona A, Absar S . A Practical Guide to Whole Slide Imaging: A White Paper From the Digital Pathology Association. Arch Pathol Lab Med. 2018; 143(2):222-234. DOI: 10.5858/arpa.2018-0343-RA. View

2.
Blumenthal G, Mansfield E, Pazdur R . Next-Generation Sequencing in Oncology in the Era of Precision Medicine. JAMA Oncol. 2015; 2(1):13-4. DOI: 10.1001/jamaoncol.2015.4503. View

3.
Lopes A, Casse A, Billard E, Boulcourt-Sambou E, Roche G, Larois C . Deciphering the immune microenvironment of a tissue by digital imaging and cognition network. Sci Rep. 2018; 8(1):16692. PMC: 6232093. DOI: 10.1038/s41598-018-34731-x. View

4.
Furrer D, Jacob S, Caron C, Sanschagrin F, Provencher L, Diorio C . Validation of a new classifier for the automated analysis of the human epidermal growth factor receptor 2 (HER2) gene amplification in breast cancer specimens. Diagn Pathol. 2013; 8:17. PMC: 3584735. DOI: 10.1186/1746-1596-8-17. View

5.
Grala B, Markiewicz T, Kozlowski W, Osowski S, Slodkowska J, Papierz W . New automated image analysis method for the assessment of Ki-67 labeling index in meningiomas. Folia Histochem Cytobiol. 2010; 47(4):587-92. DOI: 10.2478/v10042-008-0098-0. View