» Articles » PMID: 33686071

Immune Cell Profiling of the Cerebrospinal Fluid Enables the Characterization of the Brain Metastasis Microenvironment

Abstract

Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8 T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.

Citing Articles

Molecular Underpinnings of Brain Metastases.

Jacome M, Wu Q, Chen J, Mohamed Z, Mokhtari S, Pina Y Int J Mol Sci. 2025; 26(5).

PMID: 40076927 PMC: 11900073. DOI: 10.3390/ijms26052307.


Pediatric cerebrospinal fluid immune profiling distinguishes pediatric-onset multiple sclerosis from other pediatric-onset acute neurological disorders.

Espinoza D, Zrzavy T, Breville G, Thebault S, Marefi A, Mexhitaj I bioRxiv. 2025; .

PMID: 40060552 PMC: 11888486. DOI: 10.1101/2025.02.27.637541.


Linking tumor immune infiltration to enhanced longevity in recurrence-free breast cancer.

Angelats L, Pare L, Rubio-Perez C, Sanfeliu E, Gonzalez A, Segui E ESMO Open. 2025; 10(1):104109.

PMID: 39765189 PMC: 11758579. DOI: 10.1016/j.esmoop.2024.104109.


The immune landscape in brain metastasis.

Schreurs L, Vom Stein A, Junger S, Timmer M, Noh K, Buettner R Neuro Oncol. 2024; 27(1):50-62.

PMID: 39403738 PMC: 11726252. DOI: 10.1093/neuonc/noae219.


Spatial Multiomics Reveals Intratumoral Immune Heterogeneity with Distinct Cytokine Networks in Lung Cancer Brain Metastases.

Christensson G, Bocci M, Kazi J, Durand G, Lanzing G, Pietras K Cancer Res Commun. 2024; 4(11):2888-2902.

PMID: 39400127 PMC: 11539001. DOI: 10.1158/2767-9764.CRC-24-0201.


References
1.
Sharma P, Hu-Lieskovan S, Wargo J, Ribas A . Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017; 168(4):707-723. PMC: 5391692. DOI: 10.1016/j.cell.2017.01.017. View

2.
Brastianos P, Carter S, Santagata S, Cahill D, Taylor-Weiner A, Jones R . Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov. 2015; 5(11):1164-1177. PMC: 4916970. DOI: 10.1158/2159-8290.CD-15-0369. View

3.
Seoane J, De Mattos-Arruda L . Brain metastasis: new opportunities to tackle therapeutic resistance. Mol Oncol. 2014; 8(6):1120-31. PMC: 5528619. DOI: 10.1016/j.molonc.2014.05.009. View

4.
Cibulskis K, Lawrence M, Carter S, Sivachenko A, Jaffe D, Sougnez C . Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013; 31(3):213-9. PMC: 3833702. DOI: 10.1038/nbt.2514. View

5.
Hugo W, Zaretsky J, Sun L, Song C, Moreno B, Hu-Lieskovan S . Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell. 2016; 165(1):35-44. PMC: 4808437. DOI: 10.1016/j.cell.2016.02.065. View