6.
Kivisakk P, Mahad D, Callahan M, Trebst C, Tucky B, Wei T
. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A. 2003; 100(14):8389-94.
PMC: 166239.
DOI: 10.1073/pnas.1433000100.
View
7.
de Graaf M, Sillevis Smitt P, Luitwieler R, van Velzen C, van den Broek P, Kraan J
. Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom. 2010; 80(1):43-50.
DOI: 10.1002/cyto.b.20542.
View
8.
Schulte-Mecklenbeck A, Zinnhardt B, Muller-Miny L, Haessner S, Meyer Zu Horste G, Wiendl H
. Letter to the editor regarding "Stabilization of leukocytes from cerebrospinal fluid for central immunophenotypic evaluation in multicenter clinical trials". J Immunol Methods. 2023; 514:113428.
DOI: 10.1016/j.jim.2023.113428.
View
9.
van den Broek T, Borghans J, van Wijk F
. The full spectrum of human naive T cells. Nat Rev Immunol. 2018; 18(6):363-373.
DOI: 10.1038/s41577-018-0001-y.
View
10.
Hauser S, Bar-Or A, Comi G, Giovannoni G, Hartung H, Hemmer B
. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2016; 376(3):221-234.
DOI: 10.1056/NEJMoa1601277.
View
11.
Ousman S, Kubes P
. Immune surveillance in the central nervous system. Nat Neurosci. 2012; 15(8):1096-101.
PMC: 7097282.
DOI: 10.1038/nn.3161.
View
12.
Cepok S, Jacobsen M, Schock S, Omer B, Jaekel S, Boddeker I
. Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain. 2001; 124(Pt 11):2169-76.
DOI: 10.1093/brain/124.11.2169.
View
13.
Machado-Santos J, Saji E, Troscher A, Paunovic M, Liblau R, Gabriely G
. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain. 2018; 141(7):2066-2082.
PMC: 6022681.
DOI: 10.1093/brain/awy151.
View
14.
Banwell B, Bar-Or A, Arnold D, Sadovnick D, Narayanan S, McGowan M
. Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study. Lancet Neurol. 2011; 10(5):436-45.
DOI: 10.1016/S1474-4422(11)70045-X.
View
15.
Cossarizza A, Ortolani C, Paganelli R, Barbieri D, Monti D, Sansoni P
. CD45 isoforms expression on CD4+ and CD8+ T cells throughout life, from newborns to centenarians: implications for T cell memory. Mech Ageing Dev. 1996; 86(3):173-95.
DOI: 10.1016/0047-6374(95)01691-0.
View
16.
Ban M, Bredikhin D, Huang Y, Bonder M, Katarzyna K, Oliver A
. Expression profiling of cerebrospinal fluid identifies dysregulated antiviral mechanisms in multiple sclerosis. Brain. 2023; 147(2):554-565.
PMC: 10834244.
DOI: 10.1093/brain/awad404.
View
17.
van Nierop G, van Luijn M, Michels S, Melief M, Janssen M, Langerak A
. Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients. Acta Neuropathol. 2017; 134(3):383-401.
PMC: 5563341.
DOI: 10.1007/s00401-017-1744-4.
View
18.
Cepok S, Rosche B, Grummel V, Vogel F, Zhou D, Sayn J
. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain. 2005; 128(Pt 7):1667-76.
DOI: 10.1093/brain/awh486.
View
19.
Chen J, Flanagan E, Bhatti M, Jitprapaikulsan J, Dubey D, Lopez Chiriboga A
. Steroid-sparing maintenance immunotherapy for MOG-IgG associated disorder. Neurology. 2020; 95(2):e111-e120.
PMC: 7455322.
DOI: 10.1212/WNL.0000000000009758.
View
20.
Shearer W, Rosenblatt H, Gelman R, Oyomopito R, Plaeger S, Stiehm E
. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003; 112(5):973-80.
DOI: 10.1016/j.jaci.2003.07.003.
View