» Articles » PMID: 33594071

A Scalable Physician-level Deep Learning Algorithm Detects Universal Trauma on Pelvic Radiographs

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Feb 17
PMID 33594071
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Pelvic radiograph (PXR) is essential for detecting proximal femur and pelvis injuries in trauma patients, which is also the key component for trauma survey. None of the currently available algorithms can accurately detect all kinds of trauma-related radiographic findings on PXRs. Here, we show a universal algorithm can detect most types of trauma-related radiographic findings on PXRs. We develop a multiscale deep learning algorithm called PelviXNet trained with 5204 PXRs with weakly supervised point annotation. PelviXNet yields an area under the receiver operating characteristic curve (AUROC) of 0.973 (95% CI, 0.960-0.983) and an area under the precision-recall curve (AUPRC) of 0.963 (95% CI, 0.948-0.974) in the clinical population test set of 1888 PXRs. The accuracy, sensitivity, and specificity at the cutoff value are 0.924 (95% CI, 0.912-0.936), 0.908 (95% CI, 0.885-0.908), and 0.932 (95% CI, 0.919-0.946), respectively. PelviXNet demonstrates comparable performance with radiologists and orthopedics in detecting pelvic and hip fractures.

Citing Articles

Application and Prospects of Deep Learning Technology in Fracture Diagnosis.

Zhang J, Yang J, Wang X, Wang H, Zhou H, Yan Z Curr Med Sci. 2024; 44(6):1132-1140.

PMID: 39551854 DOI: 10.1007/s11596-024-2928-5.


Development and validation of deep learning models for identifying the brand of pedicle screws on plain spine radiographs.

Yao Y, Lin C, Chen H, Lin H, Hsiung W, Wang S JOR Spine. 2024; 7(3):e70001.

PMID: 39291095 PMC: 11406509. DOI: 10.1002/jsp2.70001.


Clinical validation of artificial intelligence-based preoperative virtual reduction for Neer 3- or 4-part proximal humerus fractures.

Jeon Y, Jung K, Kim M, Kim H, Yoon D, Park K BMC Musculoskelet Disord. 2024; 25(1):669.

PMID: 39192203 PMC: 11348784. DOI: 10.1186/s12891-024-07798-z.


Development and reporting of artificial intelligence in osteoporosis management.

Gatineau G, Shevroja E, Vendrami C, Gonzalez-Rodriguez E, Leslie W, Lamy O J Bone Miner Res. 2024; 39(11):1553-1573.

PMID: 39163489 PMC: 11523092. DOI: 10.1093/jbmr/zjae131.


How Can a Deep Learning Algorithm Improve Fracture Detection on X-rays in the Emergency Room?.

Reichert G, Bellamine A, Fontaine M, Naipeanu B, Altar A, Mejean E J Imaging. 2024; 7(7).

PMID: 39080893 PMC: 8321374. DOI: 10.3390/jimaging7070105.


References
1.
Hallas P, Ellingsen T . Errors in fracture diagnoses in the emergency department--characteristics of patients and diurnal variation. BMC Emerg Med. 2006; 6:4. PMC: 1386703. DOI: 10.1186/1471-227X-6-4. View

2.
Drukker K, Giger M, Joe B, Kerlikowske K, Greenwood H, Drukteinis J . Combined Benefit of Quantitative Three-Compartment Breast Image Analysis and Mammography Radiomics in the Classification of Breast Masses in a Clinical Data Set. Radiology. 2018; 290(3):621-628. PMC: 6394732. DOI: 10.1148/radiol.2018180608. View

3.
Burlew C, Moore E, Stahel P, Geddes A, Wagenaar A, Pieracci F . Preperitoneal pelvic packing reduces mortality in patients with life-threatening hemorrhage due to unstable pelvic fractures. J Trauma Acute Care Surg. 2016; 82(2):233-242. PMC: 5250563. DOI: 10.1097/TA.0000000000001324. View

4.
Chea P, Mandell J . Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 2019; 49(2):183-197. DOI: 10.1007/s00256-019-03284-z. View

5.
Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N . Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol. 2018; 48(2):239-244. DOI: 10.1007/s00256-018-3016-3. View