» Articles » PMID: 33580088

Homologous Laminar Organization of the Mouse and Human Subiculum

Overview
Journal Sci Rep
Specialty Science
Date 2021 Feb 13
PMID 33580088
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The subiculum is the major output component of the hippocampal formation and one of the major brain structures most affected by Alzheimer's disease. Our previous work revealed a hidden laminar architecture within the mouse subiculum. However, the rotation of the hippocampal longitudinal axis across species makes it unclear how the laminar organization is represented in human subiculum. Using in situ hybridization data from the Allen Human Brain Atlas, we demonstrate that the human subiculum also contains complementary laminar gene expression patterns similar to the mouse. In addition, we provide evidence that the molecular domain boundaries in human subiculum correspond to microstructural differences observed in high resolution MRI and fiber density imaging. Finally, we show both similarities and differences in the gene expression profile of subiculum pyramidal cells within homologous lamina. Overall, we present a new 3D model of the anatomical organization of human subiculum and its evolution from the mouse.

Citing Articles

Data-driven fine-grained region discovery in the mouse brain with transformers.

Lee A, Lee A, Dubuc A, Kunst M, Yao S, Lusk N bioRxiv. 2024; .

PMID: 38766132 PMC: 11100623. DOI: 10.1101/2024.05.05.592608.


An integrated single-nucleus and spatial transcriptomics atlas reveals the molecular landscape of the human hippocampus.

Thompson J, Nelson E, Tippani M, Ramnauth A, Divecha H, Miller R bioRxiv. 2024; .

PMID: 38712198 PMC: 11071618. DOI: 10.1101/2024.04.26.590643.


Immunohistochemical field parcellation of the human hippocampus along its antero-posterior axis.

Gonzalez-Arnay E, Perez-Santos I, Jimenez-Sanchez L, Cid E, Gal B, de la Prida L Brain Struct Funct. 2024; 229(2):359-385.

PMID: 38180568 PMC: 10917878. DOI: 10.1007/s00429-023-02725-9.


Further refining the boundaries of the hippocampus CA2 with gene expression and connectivity: Potential subregions and heterogeneous cell types.

Bienkowski M Hippocampus. 2023; 33(3):150-160.

PMID: 36786207 PMC: 9987718. DOI: 10.1002/hipo.23508.


Aversive Contexts Reduce Activity in the Ventral Subiculum- BNST Pathway.

Urien L, Cohen S, Howard S, Yakimov A, Nordlicht R, Bauer E Neuroscience. 2022; 496:129-140.

PMID: 35724771 PMC: 9329270. DOI: 10.1016/j.neuroscience.2022.06.019.


References
1.
OMara S, Commins S, Anderson M, Gigg J . The subiculum: a review of form, physiology and function. Prog Neurobiol. 2001; 64(2):129-55. DOI: 10.1016/s0301-0082(00)00054-x. View

2.
Alexander D, Dyrby T, Nilsson M, Zhang H . Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. 2017; 32(4):e3841. DOI: 10.1002/nbm.3841. View

3.
Witter M . Connections of the subiculum of the rat: topography in relation to columnar and laminar organization. Behav Brain Res. 2006; 174(2):251-64. DOI: 10.1016/j.bbr.2006.06.022. View

4.
Leal S, Yassa M . Neurocognitive Aging and the Hippocampus across Species. Trends Neurosci. 2015; 38(12):800-812. PMC: 5218997. DOI: 10.1016/j.tins.2015.10.003. View

5.
Shine J, Valdes-Herrera J, Tempelmann C, Wolbers T . Evidence for allocentric boundary and goal direction information in the human entorhinal cortex and subiculum. Nat Commun. 2019; 10(1):4004. PMC: 6728372. DOI: 10.1038/s41467-019-11802-9. View