» Articles » PMID: 22996553

An Anatomically Comprehensive Atlas of the Adult Human Brain Transcriptome

Abstract

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography-the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.

Citing Articles

Increased individual variability in functional connectivity of the default mode network and its genetic correlates in major depressive disorder.

Yao C, Wang P, Xiao Y, Zheng Y, Pu J, Miao Y Sci Rep. 2025; 15(1):8853.

PMID: 40087380 DOI: 10.1038/s41598-025-92849-1.


Interleukin-12 signaling drives Alzheimer's disease pathology through disrupting neuronal and oligodendrocyte homeostasis.

Schneeberger S, Kim S, Geesdorf M, Friebel E, Eede P, Jendrach M Nat Aging. 2025; .

PMID: 40082619 DOI: 10.1038/s43587-025-00816-2.


Proteolysis-Based Biomarker Repertoire of the Neurofilament Proteome.

Petzold A J Neurochem. 2025; 169(3):e70023.

PMID: 40066701 PMC: 11894590. DOI: 10.1111/jnc.70023.


Analyze the Diversity and Function of Immune Cells in the Tumor Microenvironment From the Perspective of Single-Cell RNA Sequencing.

Ma L, Luan Y, Lu L Cancer Med. 2025; 14(5):e70622.

PMID: 40062730 PMC: 11891933. DOI: 10.1002/cam4.70622.


Comparison of the social gene expression network and social brain network: a resting-state functional magnetic resonance imaging study.

Zhang Y, Zhao H, Li P, Lin X, Lu L Brain Imaging Behav. 2025; .

PMID: 40045109 DOI: 10.1007/s11682-025-00993-z.


References
1.
Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K . Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol. 2002; 12(6):587-99. DOI: 10.1016/s0924-977x(02)00108-6. View

2.
Kang H, Kawasawa Y, Cheng F, Zhu Y, Xu X, Li M . Spatio-temporal transcriptome of the human brain. Nature. 2011; 478(7370):483-9. PMC: 3566780. DOI: 10.1038/nature10523. View

3.
Felleman D, Van Essen D . Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991; 1(1):1-47. DOI: 10.1093/cercor/1.1.1-a. View

4.
Bernard A, Lubbers L, Tanis K, Luo R, Podtelezhnikov A, Finney E . Transcriptional architecture of the primate neocortex. Neuron. 2012; 73(6):1083-99. PMC: 3628746. DOI: 10.1016/j.neuron.2012.03.002. View

5.
Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D . A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011; 9(1):e1000582. PMC: 3022534. DOI: 10.1371/journal.pbio.1000582. View