» Articles » PMID: 30297807

Integration of Gene Expression and Brain-wide Connectivity Reveals the Multiscale Organization of Mouse Hippocampal Networks

Overview
Journal Nat Neurosci
Date 2018 Oct 10
PMID 30297807
Citations 96
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding the organization of the hippocampus is fundamental to understanding brain function related to learning, memory, emotions, and diseases such as Alzheimer's disease. Physiological studies in humans and rodents have suggested that there is both structural and functional heterogeneity along the longitudinal axis of the hippocampus. However, the recent discovery of discrete gene expression domains in the mouse hippocampus has provided the opportunity to re-evaluate hippocampal connectivity. To integrate mouse hippocampal gene expression and connectivity, we mapped the distribution of distinct gene expression patterns in mouse hippocampus and subiculum to create the Hippocampus Gene Expression Atlas (HGEA). Notably, previously unknown subiculum gene expression patterns revealed a hidden laminar organization. Guided by the HGEA, we constructed the most detailed hippocampal connectome available using Mouse Connectome Project ( http://www.mouseconnectome.org ) tract tracing data. Our results define the hippocampus' multiscale network organization and elucidate each subnetwork's unique brain-wide connectivity patterns.

Citing Articles

Hippocampal area CA2 activity supports social investigation following an acute social stress.

Radzicki D, McCann K, Alexander G, Dudek S Mol Psychiatry. 2024; .

PMID: 39548322 DOI: 10.1038/s41380-024-02834-9.


Hippocampal contextualization of social rewards in mice.

Duarte J, Nguyen R, Kyprou M, Li K, Milentijevic A, Cerquetella C Nat Commun. 2024; 15(1):9493.

PMID: 39489746 PMC: 11532361. DOI: 10.1038/s41467-024-53866-2.


Acute optogenetic induction of the prodromal endophenotype of CA1 hyperactivity causes schizophrenia-related deficits in cognition and salience attribution.

Kapanaiah S, Grimm C, Katzel D Schizophrenia (Heidelb). 2024; 10(1):90.

PMID: 39379378 PMC: 11461789. DOI: 10.1038/s41537-024-00513-w.


Anatomical topology of extrahippocampal projections from dorsoventral CA pyramidal neurons in mice.

Lee J, Park J, Jeong M, Oh S, Yoon J, Oh Y Front Neuroanat. 2024; 18:1421034.

PMID: 39108929 PMC: 11300266. DOI: 10.3389/fnana.2024.1421034.


Cell-cell communication: new insights and clinical implications.

Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J Signal Transduct Target Ther. 2024; 9(1):196.

PMID: 39107318 PMC: 11382761. DOI: 10.1038/s41392-024-01888-z.


References
1.
Dong H, Swanson L, Chen L, Fanselow M, Toga A . Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci U S A. 2009; 106(28):11794-9. PMC: 2710698. DOI: 10.1073/pnas.0812608106. View

2.
Vann S, Aggleton J, Maguire E . What does the retrosplenial cortex do?. Nat Rev Neurosci. 2009; 10(11):792-802. DOI: 10.1038/nrn2733. View

3.
Zeisel A, Munoz-Manchado A, Codeluppi S, Lonnerberg P, La Manno G, Jureus A . Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015; 347(6226):1138-42. DOI: 10.1126/science.aaa1934. View

4.
Sik A, Penttonen M, Ylinen A, Buzsaki G . Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci. 1995; 15(10):6651-65. PMC: 6577981. View

5.
Tovote P, Fadok J, Luthi A . Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015; 16(6):317-31. DOI: 10.1038/nrn3945. View