» Articles » PMID: 33555093

Yeast Translation Elongation Factor EEF3 Promotes Late Stages of TRNA Translocation

Overview
Journal EMBO J
Date 2021 Feb 8
PMID 33555093
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

In addition to the conserved translation elongation factors eEF1A and eEF2, fungi require a third essential elongation factor, eEF3. While eEF3 has been implicated in tRNA binding and release at the ribosomal A and E sites, its exact mechanism of action is unclear. Here, we show that eEF3 acts at the mRNA-tRNA translocation step by promoting the dissociation of the tRNA from the E site, but independent of aminoacyl-tRNA recruitment to the A site. Depletion of eEF3 in vivo leads to a general slowdown in translation elongation due to accumulation of ribosomes with an occupied A site. Cryo-EM analysis of native eEF3-ribosome complexes shows that eEF3 facilitates late steps of translocation by favoring non-rotated ribosomal states, as well as by opening the L1 stalk to release the E-site tRNA. Additionally, our analysis provides structural insights into novel translation elongation states, enabling presentation of a revised yeast translation elongation cycle.

Citing Articles

Capturing eukaryotic ribosome dynamics in situ at high resolution.

Cheng J, Wu C, Li J, Yang Q, Zhao M, Zhang X Nat Struct Mol Biol. 2025; .

PMID: 39789210 DOI: 10.1038/s41594-024-01454-9.


KRBP72 facilitates ATPase-dependent editing progression through a structural roadblock in mitochondrial A6 mRNA.

Dubey A, Tylec B, Yi S, Tedeschi F, Smith J, Read L Nucleic Acids Res. 2024; 53(2.

PMID: 39673519 PMC: 11754742. DOI: 10.1093/nar/gkae1153.


Phosphorylation of P-stalk proteins defines the ribosomal state for interaction with auxiliary protein factors.

Filipek K, Blanchet S, Molestak E, Zaciura M, Wu C, Horbowicz-Drozdzal P EMBO Rep. 2024; 25(12):5478-5506.

PMID: 39468350 PMC: 11624264. DOI: 10.1038/s44319-024-00297-1.


The gene function encoding translation elongation factor eEF3 is partially conserved across fungi.

Maldonado G, Garcia A, Herrero S, Castano I, Altmann M, Fischer R Front Microbiol. 2024; 15:1438900.

PMID: 39247690 PMC: 11378755. DOI: 10.3389/fmicb.2024.1438900.


The ABCF ATPase New1 resolves translation termination defects associated with specific tRNAArg and tRNALys isoacceptors in the P site.

Turnbull K, Paternoga H, von der Weth E, Egorov A, Pochopien A, Zhang Y Nucleic Acids Res. 2024; 52(19):12005-12020.

PMID: 39217469 PMC: 11514491. DOI: 10.1093/nar/gkae748.


References
1.
Heym R, Niessing D . Principles of mRNA transport in yeast. Cell Mol Life Sci. 2011; 69(11):1843-53. PMC: 3350770. DOI: 10.1007/s00018-011-0902-4. View

2.
Spahn C, Gomez-Lorenzo M, Grassucci R, Jorgensen R, Andersen G, Beckmann R . Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 2004; 23(5):1008-19. PMC: 380967. DOI: 10.1038/sj.emboj.7600102. View

3.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

4.
Anand M, Chakraburtty K, Marton M, Hinnebusch A, Kinzy T . Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3. J Biol Chem. 2002; 278(9):6985-91. DOI: 10.1074/jbc.M209224200. View

5.
Kurata S, Shen B, Liu J, Takeuchi N, Kaji A, Kaji H . Possible steps of complete disassembly of post-termination complex by yeast eEF3 deduced from inhibition by translocation inhibitors. Nucleic Acids Res. 2012; 41(1):264-76. PMC: 3592416. DOI: 10.1093/nar/gks958. View