» Articles » PMID: 33553685

A Simple Method for Quantitating Confocal Fluorescent Images

Overview
Specialty Biochemistry
Date 2021 Feb 8
PMID 33553685
Citations 162
Authors
Affiliations
Soon will be listed here.
Abstract

Western blotting (WB), enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FC) have long been used to assess and quantitate relative protein expression in cultured cells and tissue samples. However, WB and ELISA have limited ability to meaningfully quantitate relative protein levels in tissues with complex cell composition, while tissue dissociation followed by FC is not feasible when tissue is limiting and/or cells difficult to isolate. While protein detection in tissue using immunofluorescent (IF) probes has traditionally been considered a qualitative technique, advances in probe stability and confocal imaging allow IF data to be easily quantitated, although reproducible quantitation of relative protein expression requires careful attention to appropriate controls, experiment design, and data collection. Here we describe the methods used to quantify the data presented in et al. which lays out a workflow where IF data collected on a confocal microscope can be used to quantitate the relative levels of a molecule of interest by measuring mean fluorescent intensity across a region of interest, cell number, and the percentage of cells in a sample "positive" for staining with the fluorescent probe of interest. Overall, this manuscript discusses considerations for collecting quantifiable fluorescent images on a confocal microscope and provides explicit methods for quantitating IF data using FIJI-ImageJ.

Citing Articles

Evidence for Fgf and Wnt regulation of during limb development via two limb-specific -associated -regulatory modules.

Britton J, Somogyi-Leatigaga A, Watson B, Haro E, Mulder C, Kennedy K Front Cell Dev Biol. 2025; 13:1552716.

PMID: 40052149 PMC: 11882541. DOI: 10.3389/fcell.2025.1552716.


Surface Engineering of the Encapsulin Nanocompartment of for Cell-Targeted Protein Delivery.

Gomez-Barrera S, Delgado-Tapia W, Hernandez-Gutierrez A, Cayetano-Cruz M, Mendez C, Bustos-Jaimes I ACS Omega. 2025; 10(7):7142-7152.

PMID: 40028083 PMC: 11866011. DOI: 10.1021/acsomega.4c10285.


Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model.

Lee M, Lin E, Sivapatham A, Leiferman E, Jiao H, Lu Y Stem Cell Res Ther. 2025; 16(1):86.

PMID: 39988676 PMC: 11849328. DOI: 10.1186/s13287-025-04215-7.


Extrachromosomal circular DNA: a double-edged sword in cancer progression and age-related diseases.

Irdianto S, Dwiranti A, Bowolaksono A Hum Cell. 2025; 38(2):58.

PMID: 39969664 DOI: 10.1007/s13577-025-01178-y.


Rebalancing Immune Interactions within the Brain-Spleen Axis Mitigates Neuroinflammation in an Aging Mouse Model of Alzheimer's Disease.

Cantone A, Burgaletto C, Di Benedetto G, Gaudio G, Giallongo C, Caltabiano R J Neuroimmune Pharmacol. 2025; 20(1):15.

PMID: 39918606 PMC: 11805801. DOI: 10.1007/s11481-025-10177-7.


References
1.
Wang Y, Mahesh P, Wang Y, Novo S, Shihan M, Hayward-Piatkovskyi B . Spatiotemporal dynamics of canonical Wnt signaling during embryonic eye development and posterior capsular opacification (PCO). Exp Eye Res. 2018; 175:148-158. PMC: 6400219. DOI: 10.1016/j.exer.2018.06.020. View

2.
Verrecchia F, Mauviel A . Transforming growth factor-beta and fibrosis. World J Gastroenterol. 2007; 13(22):3056-62. PMC: 4172611. DOI: 10.3748/wjg.v13.i22.3056. View

3.
Grishagin I . Automatic cell counting with ImageJ. Anal Biochem. 2014; 473:63-5. DOI: 10.1016/j.ab.2014.12.007. View

4.
Mamuya F, Wang Y, Roop V, Scheiblin D, Zajac J, Duncan M . The roles of αV integrins in lens EMT and posterior capsular opacification. J Cell Mol Med. 2014; 18(4):656-70. PMC: 4000117. DOI: 10.1111/jcmm.12213. View

5.
Reed N, Oh D, Czymmek K, Duncan M . An immunohistochemical method for the detection of proteins in the vertebrate lens. J Immunol Methods. 2001; 253(1-2):243-52. DOI: 10.1016/s0022-1759(01)00374-x. View