» Articles » PMID: 33523925

Trabecular Bone Organoid Model for Studying the Regulation of Localized Bone Remodeling

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Feb 1
PMID 33523925
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Trabecular bone maintains physiological homeostasis and consistent structure and mass through repeated cycles of bone remodeling by means of tightly localized regulation. The molecular and cellular processes that regulate localized bone remodeling are poorly understood because of a lack of relevant experimental models. A tissue-engineered model is described here that reproduces bone tissue complexity and bone remodeling processes with high fidelity and control. An osteoid-inspired biomaterial-demineralized bone paper-directs osteoblasts to deposit structural mineralized bone tissue and subsequently acquire the resting-state bone lining cell phenotype. These cells activate and shift their secretory profile to induce osteoclastogenesis in response to chemical stimulation. Quantitative spatial mapping of cellular activities in resting and activated bone surface coculture showed that the resting-state bone lining cell network actively directs localized bone remodeling by means of paracrine signaling and cell-to-cell contact. This model may facilitate further investigation of trabecular bone niche biology.

Citing Articles

DNA-based hydrogels for bone regeneration: A promising tool for bone organoids.

Wu X, Hu Y, Sheng S, Yang H, Li Z, Han Q Mater Today Bio. 2025; 31:101502.

PMID: 39911372 PMC: 11795821. DOI: 10.1016/j.mtbio.2025.101502.


Comparison of trabecular bone microarchitecture between older males with and without a running habit: A cross-sectional study.

Zhang C, Wang S, Meng F, Shu D, Huang H, Zhang Y J Exerc Sci Fit. 2025; 23(2):83-89.

PMID: 39898366 PMC: 11786814. DOI: 10.1016/j.jesf.2025.01.002.


Skeletal organoids.

Zhang C, Jing Y, Wang J, Xia Z, Lai Y, Bai L Biomater Transl. 2025; 5(4):390-410.

PMID: 39872931 PMC: 11764188. DOI: 10.12336/biomatertransl.2024.04.005.


Future perspectives: advances in bone/cartilage organoid technology and clinical potential.

Huang J, Li A, Liang R, Wu X, Jia S, Chen J Biomater Transl. 2025; 5(4):425-443.

PMID: 39872930 PMC: 11764185. DOI: 10.12336/biomatertransl.2024.04.007.


Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration.

Shariati K, Bedar M, Huang K, Moghadam S, Mirzaie S, LaGuardia J Adv Ther (Weinh). 2025; 8(1.

PMID: 39867107 PMC: 11756815. DOI: 10.1002/adtp.202400296.


References
1.
Xiong J, Onal M, Jilka R, Weinstein R, Manolagas S, OBrien C . Matrix-embedded cells control osteoclast formation. Nat Med. 2011; 17(10):1235-41. PMC: 3192296. DOI: 10.1038/nm.2448. View

2.
Boonrungsiman S, Gentleman E, Carzaniga R, Evans N, McComb D, Porter A . The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A. 2012; 109(35):14170-5. PMC: 3435222. DOI: 10.1073/pnas.1208916109. View

3.
Bellido T, Delgado-Calle J . Ex Vivo Organ Cultures as Models to Study Bone Biology. JBMR Plus. 2020; 4(3). PMC: 7059827. DOI: 10.1002/jbm4.10345. View

4.
Jacome-Galarza C, Percin G, Muller J, Mass E, Lazarov T, Eitler J . Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019; 568(7753):541-545. PMC: 6910203. DOI: 10.1038/s41586-019-1105-7. View

5.
Manolagas S, Jilka R . Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995; 332(5):305-11. DOI: 10.1056/NEJM199502023320506. View