» Articles » PMID: 33522897

Selecting Single Cell Clustering Parameter Values Using Subsampling-based Robustness Metrics

Overview
Publisher Biomed Central
Specialty Biology
Date 2021 Feb 1
PMID 33522897
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Generating and analysing single-cell data has become a widespread approach to examine tissue heterogeneity, and numerous algorithms exist for clustering these datasets to identify putative cell types with shared transcriptomic signatures. However, many of these clustering workflows rely on user-tuned parameter values, tailored to each dataset, to identify a set of biologically relevant clusters. Whereas users often develop their own intuition as to the optimal range of parameters for clustering on each data set, the lack of systematic approaches to identify this range can be daunting to new users of any given workflow. In addition, an optimal parameter set does not guarantee that all clusters are equally well-resolved, given the heterogeneity in transcriptomic signatures in most biological systems.

Results: Here, we illustrate a subsampling-based approach (chooseR) that simultaneously guides parameter selection and characterizes cluster robustness. Through bootstrapped iterative clustering across a range of parameters, chooseR was used to select parameter values for two distinct clustering workflows (Seurat and scVI). In each case, chooseR identified parameters that produced biologically relevant clusters from both well-characterized (human PBMC) and complex (mouse spinal cord) datasets. Moreover, it provided a simple "robustness score" for each of these clusters, facilitating the assessment of cluster quality.

Conclusion: chooseR is a simple, conceptually understandable tool that can be used flexibly across clustering algorithms, workflows, and datasets to guide clustering parameter selection and characterize cluster robustness.

Citing Articles

Exploring the utility of snRNA-seq in profiling human bladder tissue: A comprehensive comparison with scRNA-seq.

Santo B, Fink E, Krylova A, Lin Y, Eltemamy M, Wee A iScience. 2025; 28(1):111628.

PMID: 39850354 PMC: 11754086. DOI: 10.1016/j.isci.2024.111628.


Integration of bulk and single-cell RNA-seq reveals prognostic gene signatures in patients with bladder cancer treated with immune checkpoint inhibitors.

Cho M, Chang H, Kim J Cancer Immunol Immunother. 2024; 74(1):28.

PMID: 39708127 PMC: 11663206. DOI: 10.1007/s00262-024-03839-7.


Enhancing spatial domain detection in spatial transcriptomics with EnSDD.

Li H, Tan Y, Zhang X Commun Biol. 2024; 7(1):1358.

PMID: 39433947 PMC: 11494180. DOI: 10.1038/s42003-024-07001-y.


A cross-disease resource of living human microglia identifies disease-enriched subsets and tool compounds recapitulating microglial states.

Tuddenham J, Taga M, Haage V, Marshe V, Roostaei T, White C Nat Neurosci. 2024; 27(12):2521-2537.

PMID: 39406950 DOI: 10.1038/s41593-024-01764-7.


Transcriptional profiling in microglia across physiological and pathological states identifies a transcriptional module associated with neurodegeneration.

Guvenek A, Parikshak N, Zamolodchikov D, Gelfman S, Moscati A, Dobbyn L Commun Biol. 2024; 7(1):1168.

PMID: 39294270 PMC: 11411103. DOI: 10.1038/s42003-024-06684-7.


References
1.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M . Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214. PMC: 4481139. DOI: 10.1016/j.cell.2015.05.002. View

2.
Risso D, Purvis L, Fletcher R, Das D, Ngai J, Dudoit S . clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets. PLoS Comput Biol. 2018; 14(9):e1006378. PMC: 6138422. DOI: 10.1371/journal.pcbi.1006378. View

3.
Wolf F, Angerer P, Theis F . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15. PMC: 5802054. DOI: 10.1186/s13059-017-1382-0. View

4.
Sathyamurthy A, Johnson K, Matson K, Dobrott C, Li L, Ryba A . Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior. Cell Rep. 2018; 22(8):2216-2225. PMC: 5849084. DOI: 10.1016/j.celrep.2018.02.003. View

5.
Lopez R, Regier J, Cole M, Jordan M, Yosef N . Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018; 15(12):1053-1058. PMC: 6289068. DOI: 10.1038/s41592-018-0229-2. View