» Articles » PMID: 33462497

Structural Basis for Non-radical Catalysis by TsrM, a Radical SAM Methylase

Overview
Journal Nat Chem Biol
Date 2021 Jan 19
PMID 33462497
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Tryptophan 2C methyltransferase (TsrM) methylates C2 of the indole ring of L-tryptophan during biosynthesis of the quinaldic acid moiety of thiostrepton. TsrM is annotated as a cobalamin-dependent radical S-adenosylmethionine (SAM) methylase; however, TsrM does not reductively cleave SAM to the universal 5'-deoxyadenosyl 5'-radical intermediate, a hallmark of radical SAM (RS) enzymes. Herein, we report structures of TsrM from Kitasatospora setae, which are the first structures of a cobalamin-dependent radical SAM methylase. Unexpectedly, the structures show an essential arginine residue that resides in the proximal coordination sphere of the cobalamin cofactor, and a [4Fe-4S] cluster that is ligated by a glutamyl residue and three cysteines in a canonical CXXXCXXC RS motif. Structures in the presence of substrates suggest a substrate-assisted mechanism of catalysis, wherein the carboxylate group of SAM serves as a general base to deprotonate N1 of the tryptophan substrate, facilitating the formation of a C2 carbanion.

Citing Articles

Structural Evidence for DUF512 as a Radical -Adenosylmethionine Cobalamin-Binding Domain.

Wang B, Solinski A, Radle M, Peduzzi O, Knox H, Cui J ACS Bio Med Chem Au. 2024; 4(6):319-330.

PMID: 39712206 PMC: 11659888. DOI: 10.1021/acsbiomedchemau.4c00067.


S-adenosyl-L-methionine is the unexpected methyl donor for the methylation of mercury by the membrane-associated HgcAB complex.

Zheng K, Rush K, Date S, Johs A, Parks J, Fleischhacker A Proc Natl Acad Sci U S A. 2024; 121(47):e2408086121.

PMID: 39546574 PMC: 11588087. DOI: 10.1073/pnas.2408086121.


Substrate Specificity of a Methyltransferase Involved in the Biosynthesis of the Lantibiotic Cacaoidin.

Liang H, Luo Y, van der Donk W Biochemistry. 2024; 63(19):2493-2505.

PMID: 39271288 PMC: 11447909. DOI: 10.1021/acs.biochem.4c00150.


Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry.

Schroder M, Pfeiffer I, Mordhorst S Beilstein J Org Chem. 2024; 20:1652-1670.

PMID: 39076295 PMC: 11285071. DOI: 10.3762/bjoc.20.147.


A modular and synthetic biosynthesis platform for de novo production of diverse halogenated tryptophan-derived molecules.

Reed K, Brooks S, Wells J, Blake K, Zhao M, Placido K Nat Commun. 2024; 15(1):3188.

PMID: 38609402 PMC: 11015028. DOI: 10.1038/s41467-024-47387-1.


References
1.
Kelly W, Pan L, Li C . Thiostrepton biosynthesis: prototype for a new family of bacteriocins. J Am Chem Soc. 2009; 131(12):4327-34. DOI: 10.1021/ja807890a. View

2.
Bagley M, Dale J, Merritt E, Xiong X . Thiopeptide antibiotics. Chem Rev. 2005; 105(2):685-714. DOI: 10.1021/cr0300441. View

3.
Hegde N, Sanders D, Rodriguez R, Balasubramanian S . The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem. 2011; 3(9):725-31. DOI: 10.1038/nchem.1114. View

4.
Liao R, Duan L, Lei C, Pan H, Ding Y, Zhang Q . Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications. Chem Biol. 2009; 16(2):141-7. PMC: 2676563. DOI: 10.1016/j.chembiol.2009.01.007. View

5.
Frenzel T, Zhou P, Floss H . Formation of 2-methyltryptophan in the biosynthesis of thiostrepton: isolation of S-adenosylmethionine:tryptophan 2-methyltransferase. Arch Biochem Biophys. 1990; 278(1):35-40. DOI: 10.1016/0003-9861(90)90227-p. View