» Articles » PMID: 33444527

Using Cryo-EM to Understand Antimycobacterial Resistance in the Catalase-peroxidase (KatG) from Mycobacterium Tuberculosis

Overview
Journal Structure
Publisher Cell Press
Date 2021 Jan 14
PMID 33444527
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Resolution advances in cryoelectron microscopy (cryo-EM) now offer the possibility to visualize structural effects of naturally occurring resistance mutations in proteins and also of understanding the binding mechanisms of small drug molecules. In Mycobacterium tuberculosis the multifunctional heme enzyme KatG is indispensable for activation of isoniazid (INH), a first-line pro-drug for treatment of tuberculosis. We present a cryo-EM methodology for structural and functional characterization of KatG and INH resistance variants. The cryo-EM structure of the 161 kDa KatG dimer in the presence of INH is reported to 2.7 Å resolution allowing the observation of potential INH binding sites. In addition, cryo-EM structures of two INH resistance variants, identified from clinical isolates, W107R and T275P, are reported. In combination with electronic absorbance spectroscopy our cryo-EM approach reveals how these resistance variants cause disorder in the heme environment preventing heme uptake and retention, providing insight into INH resistance.

Citing Articles

Identification of 2-(-aryl-1,2,3-triazol-4-yl) quinoline derivatives as antitubercular agents endowed with InhA inhibitory activity.

Sabt A, Abdulla M, Ebaid M, Pawelczyk J, Abd El Salam H, Son N Front Chem. 2024; 12:1424017.

PMID: 39170867 PMC: 11337105. DOI: 10.3389/fchem.2024.1424017.


Computational analyses of drug resistance mutations in katG and emb complexes in Mycobacterium tuberculosis.

Basrai A, Blundell T, Pandurangan A Proteins. 2024; 93(1):359-371.

PMID: 38483037 PMC: 11623437. DOI: 10.1002/prot.26684.


Characterization of a catalase-peroxidase variant (L333V-KatG) identified in an INH-resistant clinical isolate.

Uribe-Vazquez B, Diaz-Vilchis A, Avila-Linares A, Saab-Rincon G, Marin-Tovar Y, Flores H Biochem Biophys Rep. 2024; 37:101649.

PMID: 38318524 PMC: 10839757. DOI: 10.1016/j.bbrep.2024.101649.


Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach.

Nat Commun. 2024; 15(1):488.

PMID: 38216576 PMC: 10786857. DOI: 10.1038/s41467-023-44325-5.


Quantitative measurement of antibiotic resistance in reveals genetic determinants of resistance and susceptibility in a target gene approach.

Carter J Res Sq. 2023; .

PMID: 37886522 PMC: 10602118. DOI: 10.21203/rs.3.rs-3378915/v1.


References
1.
Zhao X, Yu H, Yu S, Wang F, Sacchettini J, Magliozzo R . Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry. 2006; 45(13):4131-40. DOI: 10.1021/bi051967o. View

2.
Gajhede M, Schuller D, Henriksen A, Smith A, Poulos T . Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol. 1997; 4(12):1032-8. DOI: 10.1038/nsb1297-1032. View

3.
Pierattelli R, Banci L, Eady N, Bodiguel J, Jones J, Moody P . Enzyme-catalyzed mechanism of isoniazid activation in class I and class III peroxidases. J Biol Chem. 2004; 279(37):39000-9. DOI: 10.1074/jbc.M402384200. View

4.
Kamachi S, Hirabayashi K, Tamoi M, Shigeoka S, Tada T, Wada K . The crystal structure of isoniazid-bound KatG catalase-peroxidase from Synechococcus elongatus PCC7942. FEBS J. 2014; 282(1):54-64. DOI: 10.1111/febs.13102. View

5.
Kim J, Tan Y, Wicht K, Erramilli S, Dhingra S, Okombo J . Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature. 2019; 576(7786):315-320. PMC: 6911266. DOI: 10.1038/s41586-019-1795-x. View