» Articles » PMID: 33436566

Insights into Genome Recoding from the Mechanism of a Classic +1-frameshifting TRNA

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Jan 13
PMID 33436566
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding.

Citing Articles

Genome-wide profiling of tRNA modifications by Induro-tRNAseq reveals coordinated changes.

Nakano Y, Gamper H, McGuigan H, Maharjan S, Li J, Sun Z Nat Commun. 2025; 16(1):1047.

PMID: 39865096 PMC: 11770116. DOI: 10.1038/s41467-025-56348-1.


A tRNA modification pattern that facilitates interpretation of the genetic code.

Masuda I, Hou Y Front Microbiol. 2024; 15:1415100.

PMID: 38933027 PMC: 11199890. DOI: 10.3389/fmicb.2024.1415100.


Mechanisms and Delivery of tRNA Therapeutics.

Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm S, Heinemann I Chem Rev. 2024; 124(12):7976-8008.

PMID: 38801719 PMC: 11212642. DOI: 10.1021/acs.chemrev.4c00142.


Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.

Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H Chem Rev. 2024; 124(10):6444-6500.

PMID: 38688034 PMC: 11122139. DOI: 10.1021/acs.chemrev.3c00894.


Ribosomal frameshifting at normal codon repeats recodes functional chimeric proteins in human.

Ren G, Gu X, Zhang L, Gong S, Song S, Chen S Nucleic Acids Res. 2024; 52(5):2463-2479.

PMID: 38281188 PMC: 10954444. DOI: 10.1093/nar/gkae035.


References
1.
Masuda I, Matsubara R, Christian T, Rojas E, Yadavalli S, Zhang L . tRNA Methylation Is a Global Determinant of Bacterial Multi-drug Resistance. Cell Syst. 2019; 8(4):302-314.e8. PMC: 6483872. DOI: 10.1016/j.cels.2019.03.008. View

2.
Weiss R, Dunn D, Shuh M, Atkins J, GESTELAND R . E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. New Biol. 1989; 1(2):159-69. View

3.
Munro J, Wasserman M, Altman R, Wang L, Blanchard S . Correlated conformational events in EF-G and the ribosome regulate translocation. Nat Struct Mol Biol. 2010; 17(12):1470-7. PMC: 2997181. DOI: 10.1038/nsmb.1925. View

4.
Fagan C, Maehigashi T, Dunkle J, Miles S, Dunham C . Structural insights into translational recoding by frameshift suppressor tRNASufJ. RNA. 2014; 20(12):1944-54. PMC: 4238358. DOI: 10.1261/rna.046953.114. View

5.
Datsenko K, Wanner B . One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000; 97(12):6640-5. PMC: 18686. DOI: 10.1073/pnas.120163297. View