» Articles » PMID: 35293861

Measuring the Tolerance of the Genetic Code to Altered Codon Size

Overview
Journal Elife
Specialty Biology
Date 2022 Mar 16
PMID 35293861
Authors
Affiliations
Soon will be listed here.
Abstract

Translation using four-base codons occurs in both natural and synthetic systems. What constraints contributed to the universal adoption of a triplet codon, rather than quadruplet codon, genetic code? Here, we investigate the tolerance of the genetic code to tRNA mutations that increase codon size. We found that tRNAs from all 20 canonical isoacceptor classes can be converted to functional quadruplet tRNAs (qtRNAs). Many of these selectively incorporate a single amino acid in response to a specified four-base codon, as confirmed with mass spectrometry. However, efficient quadruplet codon translation often requires multiple tRNA mutations. Moreover, while tRNAs were largely amenable to quadruplet conversion, only nine of the twenty aminoacyl tRNA synthetases tolerate quadruplet anticodons. These may constitute a functional and mutually orthogonal set, but one that sharply limits the chemical alphabet available to a nascent all-quadruplet code. Our results suggest that the triplet codon code was selected because it is simpler and sufficient, not because a quadruplet codon code is unachievable. These data provide a blueprint for synthetic biologists to deliberately engineer an all-quadruplet expanded genetic code.

Citing Articles

Toward a Quadruplet Codon Mitochondrial Genetic Code.

Pigula M, Ban Y, Schultz P ACS Synth Biol. 2024; 13(12):4175-4179.

PMID: 39631441 PMC: 11792677. DOI: 10.1021/acssynbio.4c00630.


Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.

Niu W, Guo J Chem Rev. 2024; 124(18):10577-10617.

PMID: 39207844 PMC: 11470805. DOI: 10.1021/acs.chemrev.3c00938.


Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.

Jann C, Giofre S, Bhattacharjee R, Lemke E Chem Rev. 2024; 124(18):10281-10362.

PMID: 39120726 PMC: 11441406. DOI: 10.1021/acs.chemrev.3c00878.


Tuning tRNAs for improved translation.

Weiss J, Decker J, Bolano A, Krahn N Front Genet. 2024; 15:1436860.

PMID: 38983271 PMC: 11231383. DOI: 10.3389/fgene.2024.1436860.


Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion.

Koch N, Budisa N Chem Rev. 2024; 124(16):9580-9608.

PMID: 38953775 PMC: 11363022. DOI: 10.1021/acs.chemrev.4c00031.


References
1.
Weinberg Z, Breaker R . R2R--software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics. 2011; 12:3. PMC: 3023696. DOI: 10.1186/1471-2105-12-3. View

2.
Young T, Ahmad I, Yin J, Schultz P . An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol. 2009; 395(2):361-74. DOI: 10.1016/j.jmb.2009.10.030. View

3.
Dunkelmann D, Willis J, Beattie A, Chin J . Engineered triply orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Nat Chem. 2020; 12(6):535-544. PMC: 7116526. DOI: 10.1038/s41557-020-0472-x. View

4.
Raftery L, Yarus M . Systematic alterations in the anticodon arm make tRNA(Glu)-Suoc a more efficient suppressor. EMBO J. 1987; 6(5):1499-506. PMC: 553957. DOI: 10.1002/j.1460-2075.1987.tb02392.x. View

5.
Biou V, Yaremchuk A, Tukalo M, Cusack S . The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science. 1994; 263(5152):1404-10. DOI: 10.1126/science.8128220. View