» Articles » PMID: 33404837

Untangling the Wires: Development of Sparse, Distributed Connectivity in the Mushroom Body Calyx

Overview
Journal Cell Tissue Res
Date 2021 Jan 6
PMID 33404837
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.

Citing Articles

Spatiotemporal changes in Netrin/Dscam1 signaling dictate axonal projection direction in small ventral lateral clock neurons.

Liu J, Wang Y, Liu X, Han J, Tian Y Elife. 2024; 13.

PMID: 39052321 PMC: 11272162. DOI: 10.7554/eLife.96041.


Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body.

Ganguly I, Heckman E, Litwin-Kumar A, Clowney E, Behnia R Nat Commun. 2024; 15(1):5698.

PMID: 38972924 PMC: 11228034. DOI: 10.1038/s41467-024-49616-z.


Sensory encoding and memory in the mushroom body: signals, noise, and variability.

Parnas M, Manoim J, Lin A Learn Mem. 2024; 31(5).

PMID: 38862174 PMC: 11199953. DOI: 10.1101/lm.053825.123.


Future avenues in mushroom body research.

Chan I, Chen N, Hernandez J, Meltzer H, Park A, Stahl A Learn Mem. 2024; 31(5).

PMID: 38862172 PMC: 11199946. DOI: 10.1101/lm.053863.123.


Diversity of visual inputs to Kenyon cells of the mushroom body.

Ganguly I, Heckman E, Litwin-Kumar A, Clowney E, Behnia R bioRxiv. 2023; .

PMID: 37873086 PMC: 10592809. DOI: 10.1101/2023.10.12.561793.


References
1.
Frank D, Jouandet G, Kearney P, Macpherson L, Gallio M . Temperature representation in the Drosophila brain. Nature. 2015; 519(7543):358-61. PMC: 4554763. DOI: 10.1038/nature14284. View

2.
Hall A, LUCAS F, Salinas P . Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell. 2000; 100(5):525-35. DOI: 10.1016/s0092-8674(00)80689-3. View

3.
Kohl J, Ostrovsky A, Frechter S, Jefferis G . A bidirectional circuit switch reroutes pheromone signals in male and female brains. Cell. 2013; 155(7):1610-23. PMC: 3898676. DOI: 10.1016/j.cell.2013.11.025. View

4.
Levy P, Larsen C . Odd-skipped labels a group of distinct neurons associated with the mushroom body and optic lobe in the adult Drosophila brain. J Comp Neurol. 2013; 521(16):3716-40. PMC: 3957007. DOI: 10.1002/cne.23375. View

5.
Butcher N, Friedrich A, Lu Z, Tanimoto H, Meinertzhagen I . Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx. J Comp Neurol. 2012; 520(10):2185-201. DOI: 10.1002/cne.23037. View