6.
Costa M, Manton J, Ostrovsky A, Prohaska S, Jefferis G
. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases. Neuron. 2016; 91(2):293-311.
PMC: 4961245.
DOI: 10.1016/j.neuron.2016.06.012.
View
7.
Alem S, Perry C, Zhu X, Loukola O, Ingraham T, Sovik E
. Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect. PLoS Biol. 2016; 14(10):e1002564.
PMC: 5049772.
DOI: 10.1371/journal.pbio.1002564.
View
8.
Butcher N, Friedrich A, Lu Z, Tanimoto H, Meinertzhagen I
. Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx. J Comp Neurol. 2012; 520(10):2185-201.
DOI: 10.1002/cne.23037.
View
9.
Vogt K, Aso Y, Hige T, Knapek S, Ichinose T, Friedrich A
. Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. Elife. 2016; 5.
PMC: 4884080.
DOI: 10.7554/eLife.14009.
View
10.
Stadele C, Keles M, Mongeau J, Frye M
. Non-canonical Receptive Field Properties and Neuromodulation of Feature-Detecting Neurons in Flies. Curr Biol. 2020; 30(13):2508-2519.e6.
PMC: 7343589.
DOI: 10.1016/j.cub.2020.04.069.
View
11.
Ahmed M, Rajagopalan A, Pan Y, Li Y, Williams D, Pedersen E
. Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body. Curr Biol. 2023; 33(13):2742-2760.e12.
PMC: 10529417.
DOI: 10.1016/j.cub.2023.05.064.
View
12.
Ellis K, Bervoets S, Smihula H, Ganguly I, Vigato E, Auer T
. Evolution of connectivity architecture in the Drosophila mushroom body. Nat Commun. 2024; 15(1):4872.
PMC: 11161526.
DOI: 10.1038/s41467-024-48839-4.
View
13.
Gruntman E, Turner G
. Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nat Neurosci. 2013; 16(12):1821-9.
PMC: 3908930.
DOI: 10.1038/nn.3547.
View
14.
Schlichting M, Weidner P, Diaz M, Menegazzi P, Dalla Benetta E, Helfrich-Forster C
. Light-Mediated Circuit Switching in the Drosophila Neuronal Clock Network. Curr Biol. 2019; 29(19):3266-3276.e3.
DOI: 10.1016/j.cub.2019.08.033.
View
15.
Buehlmann C, Wozniak B, Goulard R, Webb B, Graham P, Niven J
. Mushroom Bodies Are Required for Learned Visual Navigation, but Not for Innate Visual Behavior, in Ants. Curr Biol. 2020; 30(17):3438-3443.e2.
DOI: 10.1016/j.cub.2020.07.013.
View
16.
Wang Z, Pan Y, Li W, Jiang H, Chatzimanolis L, Chang J
. Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem. 2008; 15(3):133-42.
PMC: 2275655.
DOI: 10.1101/lm.873008.
View
17.
Couto A, Young F, Atzeni D, Marty S, Melo-Florez L, Hebberecht L
. Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies. Nat Commun. 2023; 14(1):4024.
PMC: 10328955.
DOI: 10.1038/s41467-023-39618-8.
View
18.
Li J, Mahoney B, Jacob M, Caron S
. Visual Input into the Drosophila melanogaster Mushroom Body. Cell Rep. 2020; 32(11):108138.
PMC: 8252886.
DOI: 10.1016/j.celrep.2020.108138.
View
19.
Klapoetke N, Nern A, Rogers E, Rubin G, Reiser M, Card G
. A functionally ordered visual feature map in the Drosophila brain. Neuron. 2022; 110(10):1700-1711.e6.
DOI: 10.1016/j.neuron.2022.02.013.
View
20.
Kind E, Longden K, Nern A, Zhao A, Sancer G, Flynn M
. Synaptic targets of photoreceptors specialized to detect color and skylight polarization in . Elife. 2021; 10.
PMC: 8789284.
DOI: 10.7554/eLife.71858.
View