» Articles » PMID: 33352068

Mechanism and Regulation of P Element Transposition

Overview
Journal Open Biol
Date 2020 Dec 22
PMID 33352068
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

P elements were first discovered in the fruit fly as the causative agents of a syndrome of aberrant genetic traits called hybrid dysgenesis. This occurs when P element-carrying males mate with females that lack P elements and results in progeny displaying sterility, mutations and chromosomal rearrangements. Since then numerous genetic, developmental, biochemical and structural studies have culminated in a deep understanding of P element transposition: from the cellular regulation and repression of transposition to the mechanistic details of the transposase nucleoprotein complex. Recent studies have revealed how piwi-interacting small RNA pathways can act to control splicing of the P element pre-mRNA to modulate transposase production in the germline. A recent cryo-electron microscopy structure of the P element transpososome reveals an unusual DNA architecture at the transposon termini and shows that the bound GTP cofactor functions to position the transposon ends within the transposase active site. Genome sequencing efforts have shown that there are P element transposase-homologous genes (called THAP9) in other animal genomes, including humans. This review highlights recent and previous studies, which together have led to new insights, and surveys our current understanding of the biology, biochemistry, mechanism and regulation of P element transposition.

Citing Articles

Activity of zebrafish THAP9 transposase and zebrafish P element-like transposons.

Kutnowski N, Ghanim G, Lee Y, Rio D bioRxiv. 2024; .

PMID: 38562726 PMC: 10983969. DOI: 10.1101/2024.03.22.586318.


Experimentally evolving populations may fail to establish an effective piRNA-based host defense against invading -elements.

Selvaraju D, Wierzbicki F, Kofler R Genome Res. 2024; 34(3):410-425.

PMID: 38490738 PMC: 11067887. DOI: 10.1101/gr.278706.123.


Themes and variations on piRNA-guided transposon control.

Loubalova Z, Konstantinidou P, Haase A Mob DNA. 2023; 14(1):10.

PMID: 37660099 PMC: 10474768. DOI: 10.1186/s13100-023-00298-2.


Novel molecular requirements for CRISPR RNA-guided transposition.

Walker M, Klompe S, Zhang D, Sternberg S Nucleic Acids Res. 2023; 51(9):4519-4535.

PMID: 37078593 PMC: 10201428. DOI: 10.1093/nar/gkad270.


Levels of P-element-induced hybrid dysgenesis in Drosophila simulans are uncorrelated with levels of P-element piRNAs.

Paulouskaya O, Romero-Soriano V, Ramirez-Lanzas C, Price T, Betancourt A G3 (Bethesda). 2022; 13(2).

PMID: 36478025 PMC: 9911080. DOI: 10.1093/g3journal/jkac324.


References
1.
Hickman A, Dyda F . Mechanisms of DNA Transposition. Microbiol Spectr. 2015; 3(2):MDNA3-0034-2014. PMC: 7422641. DOI: 10.1128/microbiolspec.MDNA3-0034-2014. View

2.
Hiraizumi Y . Spontaneous recombination in Drosophila melanogaster males. Proc Natl Acad Sci U S A. 1971; 68(2):268-70. PMC: 388914. DOI: 10.1073/pnas.68.2.268. View

3.
Sienski G, Donertas D, Brennecke J . Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 2012; 151(5):964-80. PMC: 3504300. DOI: 10.1016/j.cell.2012.10.040. View

4.
Tang M, Cecconi C, Kim H, Bustamante C, Rio D . Guanosine triphosphate acts as a cofactor to promote assembly of initial P-element transposase-DNA synaptic complexes. Genes Dev. 2005; 19(12):1422-5. PMC: 1151657. DOI: 10.1101/gad.1317605. View

5.
Kaufman P, Rio D . P element transposition in vitro proceeds by a cut-and-paste mechanism and uses GTP as a cofactor. Cell. 1992; 69(1):27-39. DOI: 10.1016/0092-8674(92)90116-t. View