» Articles » PMID: 33335560

Ultra-strong Thermoresponsive Double Network Hydrogels

Overview
Journal Soft Matter
Specialties Biochemistry
Chemistry
Date 2020 Dec 18
PMID 33335560
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Thermoresponsive poly(-isopropylacrylamide) (PNIPAAm) hydrogels are widely studied smart materials, particularly for biomedical applications, but are limited by their mechanical strength. In this study, double network (DN) hydrogels were prepared with an asymmetric crosslink design and inclusion of an electrostatic co-monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS). These P(NIPAAm--AMPS)/PNIPAAm DN hydrogels were sequentially formed with a tightly crosslinked 1 network comprised of variable levels of AMPS (100 : 0 to 25 : 75 wt% ratio of NIPAAm:AMPS) and a loosely crosslinked 2 network comprised of PNIPAAm. The impact of AMPS content in the 1 network on the volume phase transition temperature (VPTT), morphology, deswelling-reswelling kinetics and mechanical properties was evaluated. Without substantially altering the VPTT of conventional PNIPAAm hydrogels but with improving thermosensitivity, the DN hydrogel formed with 25 : 75 wt% of NIPAAm:AMPS achieved exceptional strength, high modulus and high %strain at break.

Citing Articles

The liquid-vapor water generation characteristics of thermo-responsive polymer based on the multi-scale method.

Tian S, Chen C, Huang L, Yao X, She A, Su X iScience. 2025; 28(1):111619.

PMID: 39850361 PMC: 11754082. DOI: 10.1016/j.isci.2024.111619.


Development and Performance Evaluation of Hybrid Iono-organogels for Efficient Impact Mitigation.

Varanges V, Rana V, Phillippe V, Bourban P, Pioletti D ACS Appl Eng Mater. 2024; 2(10):2369-2378.

PMID: 39479566 PMC: 11519838. DOI: 10.1021/acsaenm.4c00402.


External Stimuli-Responsive Characteristics of Poly(-diethylacrylamide) Hydrogels: Effect of Double Network Structure.

Stastna J, Ivaniuzhenkov V, Hanykova L Gels. 2022; 8(9).

PMID: 36135298 PMC: 9498466. DOI: 10.3390/gels8090586.


A Review on Novel Channel Materials for Particle Image Velocimetry Measurements-Usability of Hydrogels in Cardiovascular Applications.

Winkler C, Kuhn A, Hentschel G, Glasmacher B Gels. 2022; 8(8).

PMID: 36005103 PMC: 9407631. DOI: 10.3390/gels8080502.


Modern Strategies To Achieve Tissue-Mimetic, Mechanically Robust Hydrogels.

Means A, Grunlan M ACS Macro Lett. 2021; 8(6):705-713.

PMID: 33912358 PMC: 8077972. DOI: 10.1021/acsmacrolett.9b00276.


References
1.
Fei R, George J, Park J, Grunlan M . Thermoresponsive nanocomposite double network hydrogels. Soft Matter. 2013; 8(2):481-487. PMC: 3535461. DOI: 10.1039/C1SM06105D. View

2.
Eddington D, Beebe D . Flow control with hydrogels. Adv Drug Deliv Rev. 2004; 56(2):199-210. DOI: 10.1016/j.addr.2003.08.013. View

3.
Weng L, Gouldstone A, Wu Y, Chen W . Mechanically strong double network photocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan. Biomaterials. 2008; 29(14):2153-63. PMC: 2323023. DOI: 10.1016/j.biomaterials.2008.01.012. View

4.
Gant R, Hou Y, Grunlan M, Cote G . Development of a self-cleaning sensor membrane for implantable biosensors. J Biomed Mater Res A. 2008; 90(3):695-701. DOI: 10.1002/jbm.a.32135. View

5.
Li Z, He Q, Ma D, Chen H, Soper S . Thermoswitchable electrokinetic ion-enrichment/elution based on a poly(N-isopropylacrylamide) hydrogel plug in a microchannel. Anal Chem. 2010; 82(24):10030-6. DOI: 10.1021/ac101768j. View