» Articles » PMID: 28529447

Self-Cleaning, Thermoresponsive P (NIPAAm-co-AMPS) Double Network Membranes for Implanted Glucose Biosensors

Overview
Date 2017 May 23
PMID 28529447
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

A self-cleaning membrane that periodically rids itself of attached cells to maintain glucose diffusion could extend the lifetime of implanted glucose biosensors. Herein, we evaluate the functionality of thermoresponsive double network (DN) hydrogel membranes based on poly(-isopropylacrylamide) (PNIPAAm) and an electrostatic co-monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS). DN hydrogels are comprised of a tightly crosslinked, ionized first network [P(NIPAAm-co-AMPS)] containing variable levels of AMPS (100:0-25:75 wt% ratio of NIPAAm:AMPS) and a loosely crosslinked, interpenetrating second network [PNIPAAm]. To meet the specific requirements of a subcutaneously implanted glucose biosensor, the volume phase transition temperature is tuned and essential properties, such as glucose diffusion kinetics, thermosensitivity, and cytocompatibility are evaluated. In addition, the self-cleaning functionality is demonstrated through thermally driven cell detachment from the membranes in vitro.

Citing Articles

Responsive Acrylamide-Based Hydrogels: Advances in Interpenetrating Polymer Structures.

Hanykova L, Stastna J, Krakovsky I Gels. 2024; 10(7).

PMID: 39057438 PMC: 11276577. DOI: 10.3390/gels10070414.


Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel.

Luo Y, Pauer W, Luinstra G Gels. 2022; 8(9).

PMID: 36135243 PMC: 9498808. DOI: 10.3390/gels8090531.


Shaping Macromolecules for Sensing Applications-From Polymer Hydrogels to Foldamers.

Giuffrida S, Forysiak W, Cwynar P, Szweda R Polymers (Basel). 2022; 14(3).

PMID: 35160568 PMC: 8840496. DOI: 10.3390/polym14030580.


Fouling Prevention in Polymeric Membranes by Radiation Induced Graft Copolymerization.

Abidin M, Nasef M, Matsuura T Polymers (Basel). 2022; 14(1).

PMID: 35012218 PMC: 8747411. DOI: 10.3390/polym14010197.


Advances in Biosensors for Continuous Glucose Monitoring Towards Wearables.

Johnston L, Wang G, Hu K, Qian C, Liu G Front Bioeng Biotechnol. 2021; 9:733810.

PMID: 34490230 PMC: 8416677. DOI: 10.3389/fbioe.2021.733810.


References
1.
QUINN C, Connor R, Heller A . Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials. 1998; 18(24):1665-70. DOI: 10.1016/s0142-9612(97)00125-7. View

2.
Montgomery L, Williams B . Effect of ambient temperature on the thermal profile of the human forearm, hand, and fingers. Ann Biomed Eng. 1976; 4(3):209-19. DOI: 10.1007/BF02584515. View

3.
Fei R, George J, Park J, Grunlan M . Thermoresponsive nanocomposite double network hydrogels. Soft Matter. 2013; 8(2):481-487. PMC: 3535461. DOI: 10.1039/C1SM06105D. View

4.
Gant R, Abraham A, Hou Y, Cummins B, Grunlan M, Cote G . Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Acta Biomater. 2010; 6(8):2903-10. DOI: 10.1016/j.actbio.2010.01.039. View

5.
Bota P, Collie A, Puolakkainen P, Vernon R, Sage E, Ratner B . Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J Biomed Mater Res A. 2010; 95(2):649-57. PMC: 4235956. DOI: 10.1002/jbm.a.32893. View