» Articles » PMID: 33328654

Controlling and Enhancing CRISPR Systems

Overview
Journal Nat Chem Biol
Date 2020 Dec 17
PMID 33328654
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Many bacterial and archaeal organisms use clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) systems to defend themselves from mobile genetic elements. These CRISPR-Cas systems are classified into six types based on their composition and mechanism. CRISPR-Cas enzymes are widely used for genome editing and offer immense therapeutic opportunity to treat genetic diseases. To realize their full potential, it is important to control the timing, duration, efficiency and specificity of CRISPR-Cas enzyme activities. In this Review we discuss the mechanisms of natural CRISPR-Cas regulatory biomolecules and engineering strategies that enhance or inhibit CRISPR-Cas immunity by altering enzyme function. We also discuss the potential applications of these CRISPR regulators and highlight unanswered questions about their evolution and purpose in nature.

Citing Articles

Assessing spacer acquisition rates in type I-E CRISPR arrays.

Peach L, Zhang H, Weaver B, Boedicker J Front Microbiol. 2025; 15:1498959.

PMID: 39902289 PMC: 11788318. DOI: 10.3389/fmicb.2024.1498959.


Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism.

Yue X, Sheng D, Zhuo L, Li Y Eng Microbiol. 2024; 3(2):100075.

PMID: 39629250 PMC: 11610982. DOI: 10.1016/j.engmic.2023.100075.


Structural basis for regulation of a CBASS-CRISPR-Cas defense island by a transmembrane anti-σ factor and its ECF σ partner.

Bernal-Bernal D, Pantoja-Uceda D, Lopez-Alonso J, Lopez-Rojo A, Lopez-Ruiz J, Galbis-Martinez M Sci Adv. 2024; 10(43):eadp1053.

PMID: 39454004 PMC: 11506125. DOI: 10.1126/sciadv.adp1053.


Engineering probiotic Nissle 1917 to block transfer of multiple antibiotic resistance genes by exploiting a type I CRISPR-Cas system.

Fang M, Zhang R, Wang C, Liu Z, Fei M, Tang B Appl Environ Microbiol. 2024; 90(10):e0081124.

PMID: 39254327 PMC: 11497782. DOI: 10.1128/aem.00811-24.


Sub-MIC antibiotics increased the fitness cost of CRISPR-Cas in .

Yu T, Huang J, Huang X, Hao J, Zhang P, Guo T Front Microbiol. 2024; 15:1381749.

PMID: 39011146 PMC: 11246858. DOI: 10.3389/fmicb.2024.1381749.


References
1.
Jansen R, van Embden J, Gaastra W, Schouls L . Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002; 43(6):1565-75. DOI: 10.1046/j.1365-2958.2002.02839.x. View

2.
Mojica F, Diez-Villasenor C, Garcia-Martinez J, Soria E . Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005; 60(2):174-82. DOI: 10.1007/s00239-004-0046-3. View

3.
Makarova K, Wolf Y, Iranzo J, Shmakov S, Alkhnbashi O, Brouns S . Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2019; 18(2):67-83. PMC: 8905525. DOI: 10.1038/s41579-019-0299-x. View

4.
Vale P, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S . Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc Biol Sci. 2015; 282(1812):20151270. PMC: 4528535. DOI: 10.1098/rspb.2015.1270. View

5.
Westra E, Pul U, Heidrich N, Jore M, Lundgren M, Stratmann T . H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol. 2010; 77(6):1380-93. DOI: 10.1111/j.1365-2958.2010.07315.x. View