Designed Metal-ATCUN Derivatives: Redox- and Non-redox-Based Applications Relevant for Chemistry, Biology, and Medicine
Overview
Affiliations
The designed "ATCUN" motif (amino-terminal copper and nickel binding site) is a replica of naturally occurring ATCUN site found in many proteins/peptides, and an attractive platform for multiple applications, which include nucleases, proteases, spectroscopic probes, imaging, and small molecule activation. ATCUN motifs are engineered at periphery by conjugation to recombinant proteins, peptides, fluorophores, or recognition domains through chemically or genetically, fulfilling the needs of various biological relevance and a wide range of practical usages. This chemistry has witnessed significant growth over the last few decades and several interesting ATCUN derivatives have been described. The redox role of the ATCUN moieties is also an important aspect to be considered. The redox potential of designed M-ATCUN derivatives is modulated by judicious choice of amino acid (including stereochemistry, charge, and position) that ultimately leads to the catalytic efficiency. In this context, a wide range of M-ATCUN derivatives have been designed purposefully for various redox- and non-redox-based applications, including spectroscopic probes, target-based catalytic metallodrugs, inhibition of amyloid-β toxicity, and telomere shortening, enzyme inactivation, biomolecules stitching or modification, next-generation antibiotic, and small molecule activation.
Lopez-Guerrero V, Posadas Y, Sanchez-Lopez C, Smart A, Miranda J, Singewald K ACS Chem Neurosci. 2024; 16(2):241-261.
PMID: 39723808 PMC: 11741003. DOI: 10.1021/acschemneuro.4c00796.
Sosnowska M, Lega T, Nidzworski D, Olszewski M, Gromadzka B Biosensors (Basel). 2024; 14(11).
PMID: 39590014 PMC: 11591581. DOI: 10.3390/bios14110555.
Ascorbate: a forgotten component in the cytotoxicity of Cu(II) ATCUN peptide complexes.
Heinrich J, Siddiqui E, Eckstein H, Naumann M, Kulak N J Biol Inorg Chem. 2024; 29(7-8):801-809.
PMID: 39527272 PMC: 11638278. DOI: 10.1007/s00775-024-02083-9.
Szarszon K, Andra S, Janek T, Watly J Inorg Chem. 2024; 63(25):11616-11627.
PMID: 38856909 PMC: 11200262. DOI: 10.1021/acs.inorgchem.4c00868.
Okafor M, Champomier O, Raibaut L, Ozkan S, El Kholti N, Ory S Front Mol Biosci. 2024; 11:1355963.
PMID: 38645276 PMC: 11026709. DOI: 10.3389/fmolb.2024.1355963.