» Articles » PMID: 33258231

The Peculiar Case of the Hyper-thermostable Pyrimidine Nucleoside Phosphorylase from Thermus Thermophilus*

Overview
Journal Chembiochem
Specialty Biochemistry
Date 2020 Dec 1
PMID 33258231
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The poor solubility of many nucleosides and nucleobases in aqueous solution demands harsh reaction conditions (base, heat, cosolvent) in nucleoside phosphorylase-catalyzed processes to facilitate substrate loading beyond the low millimolar range. This, in turn, requires enzymes that can withstand these conditions. Herein, we report that the pyrimidine nucleoside phosphorylase from Thermus thermophilus is active over an exceptionally broad pH (4-10), temperature (up to 100 °C) and cosolvent space (up to 80 % (v/v) nonaqueous medium), and displays tremendous stability under harsh reaction conditions with predicted total turnover numbers of more than 10 for various pyrimidine nucleosides. However, its use as a biocatalyst for preparative applications is critically limited due to its inhibition by nucleobases at low concentrations, which is unprecedented among nonspecific pyrimidine nucleoside phosphorylases.

Citing Articles

Biocatalytic synthesis of ribonucleoside analogues using nucleoside transglycosylase-2.

Salihovic A, Ascham A, Rosenqvist P, Taladriz-Sender A, Hoskisson P, Hodgson D Chem Sci. 2024; 16(3):1302-1307.

PMID: 39691463 PMC: 11647913. DOI: 10.1039/d4sc07521h.


Engineering a Bifunctional Fusion Purine/Pyrimidine Nucleoside Phosphorylase for the Production of Nucleoside Analogs.

Hormigo D, Del Arco J, Acosta J, Furst M, Fernandez-Lucas J Biomolecules. 2024; 14(9).

PMID: 39334962 PMC: 11430618. DOI: 10.3390/biom14091196.


Gram-scale enzymatic synthesis of 2'-deoxyribonucleoside analogues using nucleoside transglycosylase-2.

Salihovic A, Ascham A, Taladriz-Sender A, Bryson S, Withers J, McKean I Chem Sci. 2024; .

PMID: 39234214 PMC: 11368039. DOI: 10.1039/d4sc04938a.


A novel thymidine phosphorylase to synthesize (halogenated) anticancer and antiviral nucleoside drugs in continuous flow.

Benitez-Mateos A, Klein C, Roura Padrosa D, Paradisi F Catal Sci Technol. 2022; 12(20):6231-6238.

PMID: 36325519 PMC: 9575728. DOI: 10.1039/d2cy00751g.


Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides: Comparison of the Thermophilic and Mesophilic Pathways.

Fateev I, Kostromina M, Abramchik Y, Eletskaya B, Mikheeva O, Lukoshin D Biomolecules. 2021; 11(4).

PMID: 33923608 PMC: 8073115. DOI: 10.3390/biom11040586.


References
1.
Wiggers H, Cheleski J, Zottis A, Oliva G, Andricopulo A, Montanari C . Effects of organic solvents on the enzyme activity of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase in calorimetric assays. Anal Biochem. 2007; 370(1):107-14. DOI: 10.1016/j.ab.2007.06.042. View

2.
Kaspar F, Giessmann R, Hellendahl K, Neubauer P, Wagner A, Gimpel M . General Principles for Yield Optimization of Nucleoside Phosphorylase-Catalyzed Transglycosylations. Chembiochem. 2019; 21(10):1428-1432. PMC: 7318676. DOI: 10.1002/cbic.201900740. View

3.
Sheldon R, Brady D . Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. ChemSusChem. 2019; 12(13):2859-2881. DOI: 10.1002/cssc.201900351. View

4.
Silva R, Schramm V . Uridine phosphorylase from Trypanosoma cruzi: kinetic and chemical mechanisms. Biochemistry. 2011; 50(42):9158-66. PMC: 3208269. DOI: 10.1021/bi2013382. View

5.
Yehia H, Westarp S, Rohrs V, Kaspar F, Giessmann R, Klare H . Efficient Biocatalytic Synthesis of Dihalogenated Purine Nucleoside Analogues Applying Thermodynamic Calculations. Molecules. 2020; 25(4). PMC: 7070685. DOI: 10.3390/molecules25040934. View