» Articles » PMID: 31820837

General Principles for Yield Optimization of Nucleoside Phosphorylase-Catalyzed Transglycosylations

Overview
Journal Chembiochem
Specialty Biochemistry
Date 2019 Dec 11
PMID 31820837
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The biocatalytic synthesis of natural and modified nucleosides with nucleoside phosphorylases offers the protecting-group-free direct glycosylation of free nucleobases in transglycosylation reactions. This contribution presents guiding principles for nucleoside phosphorylase-mediated transglycosylations alongside mathematical tools for straightforward yield optimization. We illustrate how product yields in these reactions can easily be estimated and optimized using the equilibrium constants of phosphorolysis of the nucleosides involved. Furthermore, the varying negative effects of phosphate on transglycosylation yields are demonstrated theoretically and experimentally with several examples. Practical considerations for these reactions from a synthetic perspective are presented, as well as freely available tools that serve to facilitate a reliable choice of reaction conditions to achieve maximum product yields in nucleoside transglycosylation reactions.

Citing Articles

Gram-scale enzymatic synthesis of 2'-deoxyribonucleoside analogues using nucleoside transglycosylase-2.

Salihovic A, Ascham A, Taladriz-Sender A, Bryson S, Withers J, McKean I Chem Sci. 2024; .

PMID: 39234214 PMC: 11368039. DOI: 10.1039/d4sc04938a.


Nucleoside Phosphorylases make N7-xanthosine.

Westarp S, Brandt F, Neumair L, Betz C, Dagane A, Kemper S Nat Commun. 2024; 15(1):3625.

PMID: 38684649 PMC: 11058261. DOI: 10.1038/s41467-024-47287-4.


A selective and atom-economic rearrangement of uridine by cascade biocatalysis for production of pseudouridine.

Pfeiffer M, Ribar A, Nidetzky B Nat Commun. 2023; 14(1):2261.

PMID: 37081027 PMC: 10116470. DOI: 10.1038/s41467-023-37942-7.


Optimized Biocatalytic Synthesis of 2-Selenopyrimidine Nucleosides by Transglycosylation*.

Hellendahl K, Kaspar F, Zhou X, Yang Z, Huang Z, Neubauer P Chembiochem. 2021; 22(11):2002-2009.

PMID: 33594780 PMC: 8251958. DOI: 10.1002/cbic.202100067.


Reverse C-glycosidase reaction provides C-nucleotide building blocks of xenobiotic nucleic acids.

Pfeiffer M, Nidetzky B Nat Commun. 2020; 11(1):6270.

PMID: 33293530 PMC: 7722734. DOI: 10.1038/s41467-020-20035-0.


References
1.
Downey A, Richter C, Pohl R, Mahrwald R, Hocek M . Direct One-Pot Synthesis of Nucleosides from Unprotected or 5-O-Monoprotected D-Ribose. Org Lett. 2015; 17(18):4604-7. DOI: 10.1021/acs.orglett.5b02332. View

2.
Downey A, Pohl R, Roithova J, Hocek M . Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5-O-Monoprotected or 5-Modified Ribose: Improved Protocol, Scope, and Mechanism. Chemistry. 2017; 23(16):3910-3917. DOI: 10.1002/chem.201604955. View

3.
Winkler M, Domarkas J, Schweiger L, OHagan D . Fluorinase-coupled base swaps: synthesis of [18F]-5'-deoxy-5'-fluorouridines. Angew Chem Int Ed Engl. 2008; 47(52):10141-3. DOI: 10.1002/anie.200804040. View

4.
Stachelska-Wierzchowska A, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B . Tricyclic nitrogen base 1,N-ethenoadenine and its ribosides as substrates for purine-nucleoside phosphorylases: Spectroscopic and kinetic studies. Nucleosides Nucleotides Nucleic Acids. 2018; 37(2):89-101. DOI: 10.1080/15257770.2017.1419255. View

5.
Kaspar F, Giessmann R, Hellendahl K, Neubauer P, Wagner A, Gimpel M . General Principles for Yield Optimization of Nucleoside Phosphorylase-Catalyzed Transglycosylations. Chembiochem. 2019; 21(10):1428-1432. PMC: 7318676. DOI: 10.1002/cbic.201900740. View