Ribeiro-Dos-Santos A, Maurano M
bioRxiv. 2025; .
PMID: 39974895
PMC: 11838587.
DOI: 10.1101/2025.02.04.636130.
Yousefian-Jazi A, Kim S, Chu J, Choi S, Nguyen P, Park U
Mol Neurodegener. 2025; 20(1):16.
PMID: 39920775
PMC: 11806887.
DOI: 10.1186/s13024-024-00792-y.
Wu D, Maus N, Jha A, Yang K, Wales-McGrath B, Jewell S
bioRxiv. 2025; .
PMID: 39896553
PMC: 11785043.
DOI: 10.1101/2025.01.20.633986.
Crawford J, Chikina M, Greene C
Patterns (N Y). 2025; 5(12):101115.
PMID: 39776849
PMC: 11701843.
DOI: 10.1016/j.patter.2024.101115.
Murphy A, Beardall W, Rei M, Phuycharoen M, Skene N
Nat Commun. 2024; 15(1):9951.
PMID: 39550354
PMC: 11569248.
DOI: 10.1038/s41467-024-54441-5.
dHICA: a deep transformer-based model enables accurate histone imputation from chromatin accessibility.
Wen W, Zhong J, Zhang Z, Jia L, Chu T, Wang N
Brief Bioinform. 2024; 25(6).
PMID: 39316943
PMC: 11421843.
DOI: 10.1093/bib/bbae459.
Machine and Deep Learning Methods for Predicting 3D Genome Organization.
Wall B, Nguyen M, Harrell J, Dozmorov M
Methods Mol Biol. 2024; 2856:357-400.
PMID: 39283464
DOI: 10.1007/978-1-0716-4136-1_22.
Predicting gene expression state and prioritizing putative enhancers using 5hmC signal.
Gonzalez-Avalos E, Onodera A, Samaniego-Castruita D, Rao A, Ay F
Genome Biol. 2024; 25(1):142.
PMID: 38825692
PMC: 11145787.
DOI: 10.1186/s13059-024-03273-z.
Predicting A/B compartments from histone modifications using deep learning.
Zheng S, Thakkar N, Harris H, Liu S, Zhang M, Gerstein M
iScience. 2024; 27(5):109570.
PMID: 38646172
PMC: 11031843.
DOI: 10.1016/j.isci.2024.109570.
Machine and deep learning methods for predicting 3D genome organization.
Wall B, Nguyen M, Harrell J, Dozmorov M
ArXiv. 2024; .
PMID: 38495565
PMC: 10942493.
Prediction accuracy of regulatory elements from sequence varies by functional sequencing technique.
Nowling R, Njoya K, Peters J, Riehle M
Front Cell Infect Microbiol. 2023; 13:1182567.
PMID: 37600946
PMC: 10433755.
DOI: 10.3389/fcimb.2023.1182567.
Integrative modeling of lncRNA-chromatin interaction maps reveals diverse mechanisms of nuclear retention.
Tabe-Bordbar S, Sinha S
BMC Genomics. 2023; 24(1):395.
PMID: 37442953
PMC: 10347723.
DOI: 10.1186/s12864-023-09498-9.
UNADON: transformer-based model to predict genome-wide chromosome spatial position.
Yang M, Ma J
Bioinformatics. 2023; 39(39 Suppl 1):i553-i562.
PMID: 37387176
PMC: 10311299.
DOI: 10.1093/bioinformatics/btad246.
A generalizable framework to comprehensively predict epigenome, chromatin organization, and transcriptome.
Zhang Z, Feng F, Qiu Y, Liu J
Nucleic Acids Res. 2023; 51(12):5931-5947.
PMID: 37224527
PMC: 10325920.
DOI: 10.1093/nar/gkad436.
The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles.
Schreiber J, Schreiber J, Boix C, Boix C, Wook Lee J, Li H
Genome Biol. 2023; 24(1):79.
PMID: 37072822
PMC: 10111747.
DOI: 10.1186/s13059-023-02915-y.
Computational approaches to understand transcription regulation in development.
van der Sande M, Frolich S, van Heeringen S
Biochem Soc Trans. 2023; 51(1):1-12.
PMID: 36695505
PMC: 9988001.
DOI: 10.1042/BST20210145.
Single-cell specific and interpretable machine learning models for sparse scChIP-seq data imputation.
Albrecht S, Andreani T, Andrade-Navarro M, Fontaine J
PLoS One. 2022; 17(7):e0270043.
PMID: 35776722
PMC: 9249201.
DOI: 10.1371/journal.pone.0270043.
Annotating functional effects of non-coding variants in neuropsychiatric cell types by deep transfer learning.
Lai B, Qian S, Zhang H, Zhang S, Kozlova A, Duan J
PLoS Comput Biol. 2022; 18(5):e1010011.
PMID: 35576194
PMC: 9135341.
DOI: 10.1371/journal.pcbi.1010011.
ProbC: joint modeling of epigenome and transcriptome effects in 3D genome.
Sefer E
BMC Genomics. 2022; 23(1):287.
PMID: 35397520
PMC: 8994916.
DOI: 10.1186/s12864-022-08498-5.
Identification of chromatin loops from Hi-C interaction matrices by CTCF-CTCF topology classification.
Galan S, Serra F, Marti-Renom M
NAR Genom Bioinform. 2022; 4(1):lqac021.
PMID: 35274099
PMC: 8903010.
DOI: 10.1093/nargab/lqac021.