» Articles » PMID: 33184220

A Six-amino-acid Motif is a Major Determinant in Functional Evolution of HOX1 Proteins

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2020 Nov 13
PMID 33184220
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Gene duplication and divergence is a major driver in the emergence of evolutionary novelties. How variations in amino acid sequences lead to loss of ancestral activity and functional diversification of proteins is poorly understood. We used cross-species functional analysis of Labial and its mouse HOX1 orthologs (HOXA1, HOXB1, and HOXD1) as a paradigm to address this issue. Mouse HOX1 proteins display low (30%) sequence similarity with Labial. However, substituting endogenous Labial with the mouse proteins revealed that HOXA1 has retained essential ancestral functions of Labial, while HOXB1 and HOXD1 have diverged. Genome-wide analysis demonstrated similar DNA-binding patterns of HOXA1 and Labial in mouse cells, while HOXB1 binds to distinct targets. Compared with HOXB1, HOXA1 shows an enrichment in co-occupancy with PBX proteins on target sites and exists in the same complex with PBX on chromatin. Functional analysis of HOXA1-HOXB1 chimeric proteins uncovered a novel six-amino-acid C-terminal motif (CTM) flanking the homeodomain that serves as a major determinant of ancestral activity. In vitro DNA-binding experiments and structural prediction show that CTM provides an important domain for interaction of HOXA1 proteins with PBX. Our findings show that small changes outside of highly conserved DNA-binding regions can lead to profound changes in protein function.

Citing Articles

Ambivalent partnership of the Drosophila posterior class Hox protein Abdominal-B with Extradenticle and Homothorax.

Curt J, Martin P, Foronda D, Hudry B, Kannan R, Shetty S PLoS Genet. 2025; 21(1):e1011355.

PMID: 39804927 PMC: 11759358. DOI: 10.1371/journal.pgen.1011355.


Biology of Hox Genes: Questions and Technological Challenges.

Parambil S, De Kumar B Methods Mol Biol. 2025; 2889:1-10.

PMID: 39745601 DOI: 10.1007/978-1-0716-4322-8_1.


Role of the Hox Genes, , and , in Leg Development of the Spider Mite .

Luo X, Xu Y, Jin D, Guo J, Yi T Int J Mol Sci. 2023; 24(12).

PMID: 37373537 PMC: 10299150. DOI: 10.3390/ijms241210391.


Molecular Evolution and Inheritance Pattern of Gene Family among Bovidae.

Akinyemi M, Finucan J, Grytsay A, Osaiyuwu O, Adegbaju M, Ogunade I Genes (Basel). 2022; 13(10).

PMID: 36292668 PMC: 9602320. DOI: 10.3390/genes13101783.


Diversification and Functional Evolution of HOX Proteins.

Singh N, Krumlauf R Front Cell Dev Biol. 2022; 10:798812.

PMID: 35646905 PMC: 9136108. DOI: 10.3389/fcell.2022.798812.


References
1.
Holland P, Garcia-Fernandez J, Williams N, Sidow A . Gene duplications and the origins of vertebrate development. Dev Suppl. 1994; :125-33. View

2.
Melcher C, Pankratz M . Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol. 2005; 3(9):e305. PMC: 1193519. DOI: 10.1371/journal.pbio.0030305. View

3.
Pascual-Anaya J, DAniello S, Kuratani S, Garcia-Fernandez J . Evolution of Hox gene clusters in deuterostomes. BMC Dev Biol. 2013; 13:26. PMC: 3707753. DOI: 10.1186/1471-213X-13-26. View

4.
De Kumar B, Parker H, Paulson A, Parrish M, Zeitlinger J, Krumlauf R . Hoxa1 targets signaling pathways during neural differentiation of ES cells and mouse embryogenesis. Dev Biol. 2017; 432(1):151-164. DOI: 10.1016/j.ydbio.2017.09.033. View

5.
Kmita M, Duboule D . Organizing axes in time and space; 25 years of colinear tinkering. Science. 2003; 301(5631):331-3. DOI: 10.1126/science.1085753. View