» Articles » PMID: 33141821

Testing Structural Identifiability by a Simple Scaling Method

Overview
Specialty Biology
Date 2020 Nov 3
PMID 33141821
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Successful mathematical modeling of biological processes relies on the expertise of the modeler to capture the essential mechanisms in the process at hand and on the ability to extract useful information from empirical data. A model is said to be structurally unidentifiable, if different quantitative sets of parameters provide the same observable outcome. This is typical (but not exclusive) of partially observed problems in which only a few variables can be experimentally measured. Most of the available methods to test the structural identifiability of a model are either too complex mathematically for the general practitioner to be applied, or require involved calculations or numerical computation for complex non-linear models. In this work, we present a new analytical method to test structural identifiability of models based on ordinary differential equations, based on the invariance of the equations under the scaling transformation of its parameters. The method is based on rigorous mathematical results but it is easy and quick to apply, even to test the identifiability of sophisticated highly non-linear models. We illustrate our method by example and compare its performance with other existing methods in the literature.

Citing Articles

How robust are estimates of key parameters in standard viral dynamic models?.

Zitzmann C, Ke R, Ribeiro R, Perelson A PLoS Comput Biol. 2024; 20(4):e1011437.

PMID: 38626190 PMC: 11051641. DOI: 10.1371/journal.pcbi.1011437.


CD8 T cells control SIV infection using both cytolytic effects and non-cytolytic suppression of virus production.

Policicchio B, Cardozo-Ojeda E, Xu C, Ma D, He T, Raehtz K Nat Commun. 2023; 14(1):6657.

PMID: 37863982 PMC: 10589330. DOI: 10.1038/s41467-023-42435-8.


Distilling identifiable and interpretable dynamic models from biological data.

Massonis G, Villaverde A, Banga J PLoS Comput Biol. 2023; 19(10):e1011014.

PMID: 37851682 PMC: 10615316. DOI: 10.1371/journal.pcbi.1011014.


A Continuation Technique for Maximum Likelihood Estimators in Biological Models.

Cassidy T Bull Math Biol. 2023; 85(10):90.

PMID: 37650951 PMC: 10471725. DOI: 10.1007/s11538-023-01200-0.


Classical structural identifiability methodology applied to low-dimensional dynamic systems in receptor theory.

White C, Rottschafer V, Bridge L J Pharmacokinet Pharmacodyn. 2023; 51(1):39-63.

PMID: 37389744 PMC: 10884104. DOI: 10.1007/s10928-023-09870-y.


References
1.
Chis O, Banga J, Balsa-Canto E . Structural identifiability of systems biology models: a critical comparison of methods. PLoS One. 2011; 6(11):e27755. PMC: 3222653. DOI: 10.1371/journal.pone.0027755. View

2.
Bellu G, Saccomani M, Audoly S, DAngio L . DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput Methods Programs Biomed. 2007; 88(1):52-61. PMC: 2888537. DOI: 10.1016/j.cmpb.2007.07.002. View

3.
Craciun G, Kim J, Pantea C, Rempala G . Statistical Model for Biochemical Network Inference. Commun Stat Simul Comput. 2012; 42(1):121-137. PMC: 3484689. DOI: 10.1080/03610918.2011.633200. View

4.
Locke J, Millar A, Turner M . Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J Theor Biol. 2005; 234(3):383-93. DOI: 10.1016/j.jtbi.2004.11.038. View

5.
Hong H, Ovchinnikov A, Pogudin G, Yap C . SIAN: software for structural identifiability analysis of ODE models. Bioinformatics. 2019; 35(16):2873-2874. DOI: 10.1093/bioinformatics/bty1069. View