» Articles » PMID: 1547364

Structural Identifiability of the Parameters of a Nonlinear Batch Reactor Model

Overview
Journal Math Biosci
Specialty Public Health
Date 1992 Mar 1
PMID 1547364
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The similarity transformation approach is used to analyze the structural identifiability of the parameters of a nonlinear model of microbial growth in a batch reactor in which only the concentration of microorganisms is measured. It is found that some of the model parameters are unidentifiable from this experiment, thus providing the first example of a real-life nonlinear model that turns out not to be globally identifiable. If it is possible to measure the initial concentration of growth-limiting substrate as well, all model parameters are globally identifiable.

Citing Articles

The Structural Identifiability of a Humidity-Driven Epidemiological Model of Influenza Transmission.

Zhang C, Zhang X, Bai Y, Lau E, Pei S Viruses. 2022; 14(12).

PMID: 36560799 PMC: 9780807. DOI: 10.3390/v14122795.


Testing structural identifiability by a simple scaling method.

Castro M, De Boer R PLoS Comput Biol. 2020; 16(11):e1008248.

PMID: 33141821 PMC: 7665633. DOI: 10.1371/journal.pcbi.1008248.


Modeling and Hemofiltration Treatment of Acute Inflammation.

Parker R, Hogg J, Roy A, Kellum J, Rimmele T, Daun-Gruhn S Processes (Basel). 2020; 4(4):38.

PMID: 33134139 PMC: 7596788. DOI: 10.3390/pr4040038.


Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach.

Hines K, Middendorf T, Aldrich R J Gen Physiol. 2014; 143(3):401-16.

PMID: 24516188 PMC: 3933937. DOI: 10.1085/jgp.201311116.


ON IDENTIFIABILITY OF NONLINEAR ODE MODELS AND APPLICATIONS IN VIRAL DYNAMICS.

Miao H, Xia X, Perelson A, Wu H SIAM Rev Soc Ind Appl Math. 2011; 53(1):3-39.

PMID: 21785515 PMC: 3140286. DOI: 10.1137/090757009.