» Articles » PMID: 33086205

Deep Learning-based Medical Image Segmentation with Limited Labels

Overview
Journal Phys Med Biol
Publisher IOP Publishing
Date 2020 Oct 21
PMID 33086205
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Deep learning (DL)-based auto-segmentation has the potential for accurate organ delineation in radiotherapy applications but requires large amounts of clean labeled data to train a robust model. However, annotating medical images is extremely time-consuming and requires clinical expertise, especially for segmentation that demands voxel-wise labels. On the other hand, medical images without annotations are abundant and highly accessible. To alleviate the influence of the limited number of clean labels, we propose a weakly supervised DL training approach using deformable image registration (DIR)-based annotations, leveraging the abundance of unlabeled data. We generate pseudo-contours by utilizing DIR to propagate atlas contours onto abundant unlabeled images and train a robust DL-based segmentation model. With 10 labeled TCIA dataset and 50 unlabeled CT scans from our institution, our model achieved Dice similarity coefficient of 87.9%, 73.4%, 73.4%, 63.2% and 61.0% on mandible, left & right parotid glands and left & right submandibular glands of TCIA test set and competitive performance on our institutional clinical dataset and a third party (PDDCA) dataset. Experimental results demonstrated the proposed method outperformed traditional multi-atlas DIR methods and fully supervised limited data training and is promising for DL-based medical image segmentation application with limited annotated data.

Citing Articles

Deep-learning-based segmentation using individual patient data on prostate cancer radiation therapy.

Jeong S, Cheon W, Kim S, Park W, Han Y PLoS One. 2024; 19(7):e0308181.

PMID: 39083552 PMC: 11290636. DOI: 10.1371/journal.pone.0308181.


Computed tomography-based automated measurement of abdominal aortic aneurysm using semantic segmentation with active learning.

Kim T, On S, Gwon J, Kim N Sci Rep. 2024; 14(1):8924.

PMID: 38637613 PMC: 11026521. DOI: 10.1038/s41598-024-59735-8.


Detailed Image Data Quality and Cleaning Practices for Artificial Intelligence Tools for Breast Cancer.

Wu D, Fang Y, Vo D, Spangler A, Seiler S JCO Clin Cancer Inform. 2024; 8:e2300074.

PMID: 38552191 PMC: 10994436. DOI: 10.1200/CCI.23.00074.


P-TransUNet: an improved parallel network for medical image segmentation.

Chong Y, Xie N, Liu X, Pan S BMC Bioinformatics. 2023; 24(1):285.

PMID: 37464322 PMC: 10354938. DOI: 10.1186/s12859-023-05409-7.


Young oncologists benefit more than experts from deep learning-based organs-at-risk contouring modeling in nasopharyngeal carcinoma radiotherapy: A multi-institution clinical study exploring working experience and institute group style factor.

Song Y, Hu J, Wang Q, Yu C, Su J, Chen L Clin Transl Radiat Oncol. 2023; 41:100635.

PMID: 37251619 PMC: 10213188. DOI: 10.1016/j.ctro.2023.100635.


References
1.
Nikolov S, Blackwell S, Zverovitch A, Mendes R, Livne M, De Fauw J . Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study. J Med Internet Res. 2021; 23(7):e26151. PMC: 8314151. DOI: 10.2196/26151. View

2.
Lu W, Chen M, Olivera G, Ruchala K, Mackie T . Fast free-form deformable registration via calculus of variations. Phys Med Biol. 2004; 49(14):3067-87. DOI: 10.1088/0031-9155/49/14/003. View

3.
Gu X, Pan H, Liang Y, Castillo R, Yang D, Choi D . Implementation and evaluation of various demons deformable image registration algorithms on a GPU. Phys Med Biol. 2009; 55(1):207-19. PMC: 7540904. DOI: 10.1088/0031-9155/55/1/012. View

4.
Hosny A, Parmar C, Quackenbush J, Schwartz L, Aerts H . Artificial intelligence in radiology. Nat Rev Cancer. 2018; 18(8):500-510. PMC: 6268174. DOI: 10.1038/s41568-018-0016-5. View

5.
Raudaschl P, Zaffino P, Sharp G, Spadea M, Chen A, Dawant B . Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015. Med Phys. 2017; 44(5):2020-2036. DOI: 10.1002/mp.12197. View