» Articles » PMID: 38552191

Detailed Image Data Quality and Cleaning Practices for Artificial Intelligence Tools for Breast Cancer

Overview
Date 2024 Mar 29
PMID 38552191
Authors
Affiliations
Soon will be listed here.
Abstract

Standardizing image-data preparation practices to improve accuracy/consistency of AI diagnostic tools.

References
1.
Chinn E, Arora R, Arnaout R, Arnaout R . ENRICHing medical imaging training sets enables more efficient machine learning. J Am Med Inform Assoc. 2023; 30(6):1079-1090. PMC: 10198519. DOI: 10.1093/jamia/ocad055. View

2.
Byrd D, Brierley J, Baker T, Sullivan D, Gress D . Current and future cancer staging after neoadjuvant treatment for solid tumors. CA Cancer J Clin. 2020; 71(2):140-148. DOI: 10.3322/caac.21640. View

3.
Ren W, Chen M, Qiao Y, Zhao F . Global guidelines for breast cancer screening: A systematic review. Breast. 2022; 64:85-99. PMC: 9142711. DOI: 10.1016/j.breast.2022.04.003. View

4.
Potnis K, Ross J, Aneja S, Gross C, Richman I . Artificial Intelligence in Breast Cancer Screening: Evaluation of FDA Device Regulation and Future Recommendations. JAMA Intern Med. 2022; 182(12):1306-1312. PMC: 10623674. DOI: 10.1001/jamainternmed.2022.4969. View

5.
Ou W, Polat D, Dogan B . Deep learning in breast radiology: current progress and future directions. Eur Radiol. 2021; 31(7):4872-4885. DOI: 10.1007/s00330-020-07640-9. View