Detailed Image Data Quality and Cleaning Practices for Artificial Intelligence Tools for Breast Cancer
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
Standardizing image-data preparation practices to improve accuracy/consistency of AI diagnostic tools.
References
1.
Chinn E, Arora R, Arnaout R, Arnaout R
. ENRICHing medical imaging training sets enables more efficient machine learning. J Am Med Inform Assoc. 2023; 30(6):1079-1090.
PMC: 10198519.
DOI: 10.1093/jamia/ocad055.
View
2.
Byrd D, Brierley J, Baker T, Sullivan D, Gress D
. Current and future cancer staging after neoadjuvant treatment for solid tumors. CA Cancer J Clin. 2020; 71(2):140-148.
DOI: 10.3322/caac.21640.
View
3.
Ren W, Chen M, Qiao Y, Zhao F
. Global guidelines for breast cancer screening: A systematic review. Breast. 2022; 64:85-99.
PMC: 9142711.
DOI: 10.1016/j.breast.2022.04.003.
View
4.
Potnis K, Ross J, Aneja S, Gross C, Richman I
. Artificial Intelligence in Breast Cancer Screening: Evaluation of FDA Device Regulation and Future Recommendations. JAMA Intern Med. 2022; 182(12):1306-1312.
PMC: 10623674.
DOI: 10.1001/jamainternmed.2022.4969.
View
5.
Ou W, Polat D, Dogan B
. Deep learning in breast radiology: current progress and future directions. Eur Radiol. 2021; 31(7):4872-4885.
DOI: 10.1007/s00330-020-07640-9.
View