» Articles » PMID: 33056988

Analysis of Translating Mitoribosome Reveals Functional Characteristics of Translation in Mitochondria of Fungi

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Oct 15
PMID 33056988
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Mitoribosomes are specialized protein synthesis machineries in mitochondria. However, how mRNA binds to its dedicated channel, and tRNA moves as the mitoribosomal subunit rotate with respect to each other is not understood. We report models of the translating fungal mitoribosome with mRNA, tRNA and nascent polypeptide, as well as an assembly intermediate. Nicotinamide adenine dinucleotide (NAD) is found in the central protuberance of the large subunit, and the ATPase inhibitory factor 1 (IF) in the small subunit. The models of the active mitoribosome explain how mRNA binds through a dedicated protein platform on the small subunit, tRNA is translocated with the help of the protein mL108, bridging it with L1 stalk on the large subunit, and nascent polypeptide paths through a newly shaped exit tunnel involving a series of structural rearrangements. An assembly intermediate is modeled with the maturation factor Atp25, providing insight into the biogenesis of the mitoribosomal large subunit and translation regulation.

Citing Articles

Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk.

Singh V, Itoh Y, DelOlio S, Hassan A, Naschberger A, Flygaard R Nat Commun. 2024; 15(1):4272.

PMID: 38769321 PMC: 11106087. DOI: 10.1038/s41467-024-48163-x.


METTL17 is an Fe-S cluster checkpoint for mitochondrial translation.

Ast T, Itoh Y, Sadre S, McCoy J, Namkoong G, Wengrod J Mol Cell. 2024; 84(2):359-374.e8.

PMID: 38199006 PMC: 11046306. DOI: 10.1016/j.molcel.2023.12.016.


Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling.

Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G Int J Mol Sci. 2023; 24(24).

PMID: 38139332 PMC: 10743472. DOI: 10.3390/ijms242417503.


The dynamics of subunit rotation in a eukaryotic ribosome.

Freitas F, Fuchs G, Junio de Oliveira R, Whitford P Biophysica. 2023; 1(2):204-221.

PMID: 37484008 PMC: 10361705. DOI: 10.3390/biophysica1020016.


Structural analysis of mitochondrial rRNA gene variants identified in patients with deafness.

Vila-Sanjurjo A, Mallo N, Elson J, Smith P, Blakely E, Taylor R Front Physiol. 2023; 14():1163496.

PMID: 37362424 PMC: 10285412. DOI: 10.3389/fphys.2023.1163496.


References
1.
Kummer E, Ban N . Structural insights into mammalian mitochondrial translation elongation catalyzed by mtEFG1. EMBO J. 2020; 39(15):e104820. PMC: 7396830. DOI: 10.15252/embj.2020104820. View

2.
Brown A, Amunts A, Bai X, Sugimoto Y, Edwards P, Murshudov G . Structure of the large ribosomal subunit from human mitochondria. Science. 2014; 346(6210):718-722. PMC: 4246062. DOI: 10.1126/science.1258026. View

3.
Zhang K . Gctf: Real-time CTF determination and correction. J Struct Biol. 2015; 193(1):1-12. PMC: 4711343. DOI: 10.1016/j.jsb.2015.11.003. View

4.
Woellhaf M, Sommer F, Schroda M, Herrmann J . Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein. Mol Biol Cell. 2016; 27(20):3031-3039. PMC: 5063612. DOI: 10.1091/mbc.E16-07-0513. View

5.
Cabezon E, Runswick M, Leslie A, Walker J . The structure of bovine IF(1), the regulatory subunit of mitochondrial F-ATPase. EMBO J. 2001; 20(24):6990-6. PMC: 125800. DOI: 10.1093/emboj/20.24.6990. View