» Articles » PMID: 33576519

Interconnected Assembly Factors Regulate the Biogenesis of Mitoribosomal Large Subunit

Overview
Journal EMBO J
Date 2021 Feb 12
PMID 33576519
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Mitoribosomes consist of ribosomal RNA and protein components, coordinated assembly of which is critical for function. We used mitoribosomes from Trypanosoma brucei with reduced RNA and increased protein mass to provide insights into the biogenesis of the mitoribosomal large subunit. Structural characterization of a stable assembly intermediate revealed 22 assembly factors, some of which have orthologues/counterparts/homologues in mammalian genomes. These assembly factors form a protein network that spans a distance of 180 Å, shielding the ribosomal RNA surface. The central protuberance and L7/L12 stalk are not assembled entirely and require removal of assembly factors and remodeling of the mitoribosomal proteins to become functional. The conserved proteins GTPBP7 and mt-EngA are bound together at the subunit interface in proximity to the peptidyl transferase center. A mitochondrial acyl-carrier protein plays a role in docking the L1 stalk, which needs to be repositioned during maturation. Additional enzymatically deactivated factors scaffold the assembly while the exit tunnel is blocked. Together, this extensive network of accessory factors stabilizes the immature sites and connects the functionally important regions of the mitoribosomal large subunit.

Citing Articles

Mettl15-Mettl17 modulates the transition from early to late pre-mitoribosome.

Zgadzay Y, Mirabello C, Wanes G, Panek T, Chauhan P, Nystedt B bioRxiv. 2025; .

PMID: 39896671 PMC: 11785013. DOI: 10.1101/2024.12.18.629302.


The binding of RbgA to a critical 50S assembly intermediate facilitates YphC function in bacterial ribosomal assembly.

Arpin D, Palacios A, Basu K, Ortega J Nucleic Acids Res. 2024; 53(2.

PMID: 39658043 PMC: 11754645. DOI: 10.1093/nar/gkae1197.


Mitochondrial ribosome biogenesis and redox sensing.

Brischigliaro M, Sierra-Magro A, Ahn A, Barrientos A FEBS Open Bio. 2024; 14(10):1640-1655.

PMID: 38849194 PMC: 11452305. DOI: 10.1002/2211-5463.13844.


Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk.

Singh V, Itoh Y, DelOlio S, Hassan A, Naschberger A, Flygaard R Nat Commun. 2024; 15(1):4272.

PMID: 38769321 PMC: 11106087. DOI: 10.1038/s41467-024-48163-x.


Critical steps in the assembly process of the bacterial 50S ribosomal subunit.

Seffouh A, Nikolay R, Ortega J Nucleic Acids Res. 2024; 52(8):4111-4123.

PMID: 38554105 PMC: 11077053. DOI: 10.1093/nar/gkae199.


References
1.
LARKIN M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H . Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21):2947-8. DOI: 10.1093/bioinformatics/btm404. View

2.
Pearce S, Rebelo-Guiomar P, DSouza A, Powell C, Van Haute L, Minczuk M . Regulation of Mammalian Mitochondrial Gene Expression: Recent Advances. Trends Biochem Sci. 2017; 42(8):625-639. PMC: 5538620. DOI: 10.1016/j.tibs.2017.02.003. View

3.
Schneider A, Charriere F, Pusnik M, Horn E . Isolation of mitochondria from procyclic Trypanosoma brucei. Methods Mol Biol. 2008; 372:67-80. DOI: 10.1007/978-1-59745-365-3_5. View

4.
Itoh Y, Andrell J, Choi A, Richter U, Maiti P, Best R . Mechanism of membrane-tethered mitochondrial protein synthesis. Science. 2021; 371(6531):846-849. PMC: 7610362. DOI: 10.1126/science.abe0763. View

5.
Kim H, Barrientos A . MTG1 couples mitoribosome large subunit assembly with intersubunit bridge formation. Nucleic Acids Res. 2018; 46(16):8435-8453. PMC: 6144824. DOI: 10.1093/nar/gky672. View