» Articles » PMID: 33053167

Cell Division Requires RNA Eviction from Condensing Chromosomes

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2020 Oct 14
PMID 33053167
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

During mitosis, the genome is transformed from a decondensed, transcriptionally active state to a highly condensed, transcriptionally inactive state. Mitotic chromosome reorganization is marked by the general attenuation of transcription on chromosome arms, yet how the cell regulates nuclear and chromatin-associated RNAs after chromosome condensation and nuclear envelope breakdown is unknown. SAF-A/hnRNPU is an abundant nuclear protein with RNA-to-DNA tethering activity, coordinated by two spatially distinct nucleic acid-binding domains. Here we show that RNA is evicted from prophase chromosomes through Aurora-B-dependent phosphorylation of the SAF-A DNA-binding domain; failure to execute this pathway leads to accumulation of SAF-A-RNA complexes on mitotic chromosomes, defects in metaphase chromosome alignment, and elevated rates of chromosome missegregation in anaphase. This work reveals a role for Aurora-B in removing chromatin-associated RNAs during prophase and demonstrates that Aurora-B-dependent relocalization of SAF-A during cell division contributes to the fidelity of chromosome segregation.

Citing Articles

An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions.

Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F Nat Commun. 2025; 16(1):2325.

PMID: 40057470 PMC: 11890761. DOI: 10.1038/s41467-025-57671-3.


An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions.

Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F bioRxiv. 2024; .

PMID: 39386702 PMC: 11463612. DOI: 10.1101/2024.09.25.614981.


Role of the SAF-A SAP domain in X inactivation, transcription, splicing, and cell proliferation.

Sharp J, Sparago E, Thomas R, Alimenti K, Wang W, Blower M bioRxiv. 2024; .

PMID: 39314300 PMC: 11419091. DOI: 10.1101/2024.09.09.612041.


Spatial omics advances for in situ RNA biology.

Ren J, Luo S, Shi H, Wang X Mol Cell. 2024; 84(19):3737-3757.

PMID: 39270643 PMC: 11455602. DOI: 10.1016/j.molcel.2024.08.002.


Deciphering the phospho-signature induced by hepatitis B virus in primary human hepatocytes.

Pastor F, Charles E, Belmudes L, Chabrolles H, Cescato M, Rivoire M Front Microbiol. 2024; 15:1415449.

PMID: 38841065 PMC: 11150682. DOI: 10.3389/fmicb.2024.1415449.


References
1.
Petrov D, Margreitter C, Grandits M, Oostenbrink C, Zagrovic B . A systematic framework for molecular dynamics simulations of protein post-translational modifications. PLoS Comput Biol. 2013; 9(7):e1003154. PMC: 3715417. DOI: 10.1371/journal.pcbi.1003154. View

2.
Hengeveld R, Hertz N, Vromans M, Zhang C, Burlingame A, Shokat K . Development of a chemical genetic approach for human aurora B kinase identifies novel substrates of the chromosomal passenger complex. Mol Cell Proteomics. 2012; 11(5):47-59. PMC: 3418839. DOI: 10.1074/mcp.M111.013912. View

3.
Boke E, Ruer M, Wuhr M, Coughlin M, Lemaitre R, Gygi S . Amyloid-like Self-Assembly of a Cellular Compartment. Cell. 2016; 166(3):637-650. PMC: 5082712. DOI: 10.1016/j.cell.2016.06.051. View

4.
Ohta S, Bukowski-Wills J, Sanchez-Pulido L, de Lima Alves F, Wood L, Chen Z . The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell. 2010; 142(5):810-21. PMC: 2982257. DOI: 10.1016/j.cell.2010.07.047. View

5.
Wang K, Chang H . Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011; 43(6):904-14. PMC: 3199020. DOI: 10.1016/j.molcel.2011.08.018. View