» Articles » PMID: 33023892

The RNA M6A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells

Abstract

Glioblastoma is a universally lethal cancer driven by glioblastoma stem cells (GSC). Here, we interrogated -methyladenosine (m6A) mRNA modifications in GSCs by methyl RNA immunoprecipitation followed by sequencing and transcriptome analysis, finding transcripts marked by m6A often upregulated compared with normal neural stem cells (NSC). Interrogating m6A regulators, GSCs displayed preferential expression, as well as and dependency, of the m6A reader YTHDF2, in contrast to NSCs. Although YTHDF2 has been reported to destabilize mRNAs, YTHDF2 stabilized and transcripts in GSCs in an m6A-dependent manner. We identified IGFBP3 as a downstream effector of the YTHDF2-MYC axis in GSCs. The IGF1/IGF1R inhibitor linsitinib preferentially targeted YTHDF2-expressing cells, inhibiting GSC viability without affecting NSCs and impairing glioblastoma growth. Thus, YTHDF2 links RNA epitranscriptomic modifications and GSC growth, laying the foundation for the YTHDF2-MYC-IGFBP3 axis as a specific and novel therapeutic target in glioblastoma. SIGNIFICANCE: Epitranscriptomics promotes cellular heterogeneity in cancer. RNA m6A landscapes of cancer and NSCs identified cell type-specific dependencies and therapeutic vulnerabilities. The m6A reader YTHDF2 stabilized mRNA specifically in cancer stem cells. Given the challenge of targeting MYC, YTHDF2 presents a therapeutic target to perturb MYC signaling in glioblastoma..

Citing Articles

Epitranscriptomics in the Glioma Context: A Brief Overview.

Santamarina-Ojeda P, Fernandez A, Fraga M Cancers (Basel). 2025; 17(4).

PMID: 40002173 PMC: 11853273. DOI: 10.3390/cancers17040578.


-induced promotes the malignant progression of pancreatic neuroendocrine neoplasms through -mediated lipid metabolism.

Chen J, Ye M, Gu D, Yu P, Xu L, Xue B Int J Biol Sci. 2025; 21(4):1478-1496.

PMID: 39990672 PMC: 11844274. DOI: 10.7150/ijbs.103428.


Molecular mechanisms of m6A modifications regulating tumor radioresistance.

Shen R, Jiang Z, Wang H, Zheng Z, Jiang X Mol Med. 2025; 31(1):64.

PMID: 39972266 PMC: 11837317. DOI: 10.1186/s10020-025-01121-9.


The role of N(6)-methyladenosine (m6a) modification in cancer: recent advances and future directions.

Xie X, Fang Z, Zhang H, Wang Z, Li J, Jia Y EXCLI J. 2025; 24:113-150.

PMID: 39967906 PMC: 11830918. DOI: 10.17179/excli2024-7935.


METTL14 modulates the progression and ferroptosis of colitis by regulating the stability of m6A-modified GPX4.

Chen Y, Fan W, Lyu Y, Liao J, Zhou Y Eur J Med Res. 2025; 30(1):88.

PMID: 39920858 PMC: 11806865. DOI: 10.1186/s40001-025-02334-8.


References
1.
MacLeod G, Bozek D, Rajakulendran N, Monteiro V, Ahmadi M, Steinhart Z . Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells. Cell Rep. 2019; 27(3):971-986.e9. DOI: 10.1016/j.celrep.2019.03.047. View

2.
Wan Y, Allen G, Liu Z . TCGA2STAT: simple TCGA data access for integrated statistical analysis in R. Bioinformatics. 2015; 32(6):952-4. DOI: 10.1093/bioinformatics/btv677. View

3.
Wang X, Zhao B, Roundtree I, Lu Z, Han D, Ma H . N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015; 161(6):1388-99. PMC: 4825696. DOI: 10.1016/j.cell.2015.05.014. View

4.
Vivian J, Rao A, Nothaft F, Ketchum C, Armstrong J, Novak A . Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017; 35(4):314-316. PMC: 5546205. DOI: 10.1038/nbt.3772. View

5.
Martin J, Lin M, McGowan E, Baxter R . Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. J Biol Chem. 2009; 284(38):25542-52. PMC: 2757955. DOI: 10.1074/jbc.M109.007120. View