» Articles » PMID: 29335608

N-methyladenosine RNA Modification Regulates Embryonic Neural Stem Cell Self-renewal Through Histone Modifications

Overview
Journal Nat Neurosci
Date 2018 Jan 17
PMID 29335608
Citations 239
Authors
Affiliations
Soon will be listed here.
Abstract

Internal N-methyladenosine (mA) modification is widespread in messenger RNAs (mRNAs) and is catalyzed by heterodimers of methyltransferase-like protein 3 (Mettl3) and Mettl14. To understand the role of mA in development, we deleted Mettl14 in embryonic neural stem cells (NSCs) in a mouse model. Phenotypically, NSCs lacking Mettl14 displayed markedly decreased proliferation and premature differentiation, suggesting that mA modification enhances NSC self-renewal. Decreases in the NSC pool led to a decreased number of late-born neurons during cortical neurogenesis. Mechanistically, we discovered a genome-wide increase in specific histone modifications in Mettl14 knockout versus control NSCs. These changes correlated with altered gene expression and observed cellular phenotypes, suggesting functional significance of altered histone modifications in knockout cells. Finally, we found that mA regulates histone modification in part by destabilizing transcripts that encode histone-modifying enzymes. Our results suggest an essential role for mA in development and reveal mA-regulated histone modifications as a previously unknown mechanism of gene regulation in mammalian cells.

Citing Articles

mRNA mA regulates gene expression via H3K4me3 shift in 5' UTR.

Yang Y, Huang Y, Wang T, Li S, Jiang J, Chen S Genome Biol. 2025; 26(1):54.

PMID: 40075435 PMC: 11900566. DOI: 10.1186/s13059-025-03515-8.


Injecting structure-aware insights for the learning of RNA sequence representations to identify m6A modification sites.

Yu Y, Xiang S, Wu M PeerJ. 2025; 13:e18878.

PMID: 40017651 PMC: 11867033. DOI: 10.7717/peerj.18878.


Mettl3-mA-NPY axis governing neuron-microglia interaction regulates sleep amount of mice.

Sun Q, Zhu J, Zhao X, Huang X, Qu W, Tang X Cell Discov. 2025; 11(1):10.

PMID: 39905012 PMC: 11794856. DOI: 10.1038/s41421-024-00756-y.


Dynamics and regulatory roles of RNA mA methylation in unbalanced genomes.

Zhang S, Wang R, Luo K, Gu S, Liu X, Wang J Elife. 2025; 13.

PMID: 39853090 PMC: 11759410. DOI: 10.7554/eLife.100144.


Epigenetic Mechanisms in Osteoporosis: Exploring the Power of mA RNA Modification.

Tian S, Song Y, Guo L, Zhao H, Bai M, Miao M J Cell Mol Med. 2025; 29(1):e70344.

PMID: 39779466 PMC: 11710941. DOI: 10.1111/jcmm.70344.


References
1.
Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M . Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science. 1999; 284(5413):479-82. DOI: 10.1126/science.284.5413.479. View

2.
Wang P, Doxtader K, Nam Y . Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol Cell. 2016; 63(2):306-317. PMC: 4958592. DOI: 10.1016/j.molcel.2016.05.041. View

3.
Wang X, Zhao B, Roundtree I, Lu Z, Han D, Ma H . N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015; 161(6):1388-99. PMC: 4825696. DOI: 10.1016/j.cell.2015.05.014. View

4.
Lim D, Huang Y, Swigut T, Mirick A, Garcia-Verdugo J, Wysocka J . Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature. 2009; 458(7237):529-33. PMC: 3800116. DOI: 10.1038/nature07726. View

5.
Wang Y, Zhao J . Update: Mechanisms Underlying N-Methyladenosine Modification of Eukaryotic mRNA. Trends Genet. 2016; 32(12):763-773. PMC: 5123927. DOI: 10.1016/j.tig.2016.09.006. View