» Articles » PMID: 32988739

It's in Our Blood: A Glimpse of Personalized Medicine

Overview
Journal Trends Mol Med
Date 2020 Sep 29
PMID 32988739
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Recent advances in protein profiling technology has facilitated simultaneous measurement of thousands of proteins in large population studies, exposing the depth and complexity of the plasma and serum proteomes. This revealed that proteins in circulation were organized into regulatory modules under genetic control and closely associated with current and future common diseases. Unlike networks in solid tissues, serum protein networks comprise members synthesized across different tissues of the body. Genetic analysis reveals that this cross-tissue regulation of the serum proteome participates in systemic homeostasis and mirrors the global disease state of individuals. Here, we discuss how application of this information in routine clinical evaluations may transform the future practice of medicine.

Citing Articles

Serum proteomics reveal APOE-ε4-dependent and APOE-ε4-independent protein signatures in Alzheimer's disease.

Frick E, Emilsson V, Jonmundsson T, Steindorsdottir A, Johnson E, Puerta R Nat Aging. 2024; 4(10):1446-1464.

PMID: 39169269 PMC: 11485263. DOI: 10.1038/s43587-024-00693-1.


Trace Elements Open a New Direction for the Diagnosis of Atherosclerosis.

Meng H, Ruan J, Chen Y, Yan Z, Liu J, Wang X Rev Cardiovasc Med. 2024; 24(1):23.

PMID: 39076854 PMC: 11270404. DOI: 10.31083/j.rcm2401023.


Nontraditional models as research tools: the road not taken.

Kiaris H Trends Mol Med. 2024; 30(10):924-931.

PMID: 39069395 PMC: 11466687. DOI: 10.1016/j.molmed.2024.07.005.


Serum proteomics reveals APOE dependent and independent protein signatures in Alzheimer's disease.

Gudmundsdottir V, Frick E, Emilsson V, Jonmundsson T, Steindorsdottir A, Johnson E Res Sq. 2024; .

PMID: 38260284 PMC: 10802738. DOI: 10.21203/rs.3.rs-3706206/v1.


Serum proteomics reveals dependent and independent protein signatures in Alzheimer's disease.

Frick E, Emilsson V, Jonmundsson T, Steindorsdottir A, Johnson E, Puerta R medRxiv. 2023; .

PMID: 37986771 PMC: 10659486. DOI: 10.1101/2023.11.08.23298251.


References
1.
Chick J, Munger S, Simecek P, Huttlin E, Choi K, Gatti D . Defining the consequences of genetic variation on a proteome-wide scale. Nature. 2016; 534(7608):500-5. PMC: 5292866. DOI: 10.1038/nature18270. View

2.
Gaffney D, Veyrieras J, Degner J, Pique-Regi R, Pai A, Crawford G . Dissecting the regulatory architecture of gene expression QTLs. Genome Biol. 2012; 13(1):R7. PMC: 3334587. DOI: 10.1186/gb-2012-13-1-r7. View

3.
Sinha M, Jang Y, Oh J, Khong D, Wu E, Manohar R . Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014; 344(6184):649-52. PMC: 4104429. DOI: 10.1126/science.1251152. View

4.
Wang B, Mezlini A, Demir F, Fiume M, Tu Z, Brudno M . Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014; 11(3):333-7. DOI: 10.1038/nmeth.2810. View

5.
Suhre K, Arnold M, Mukund Bhagwat A, Cotton R, Engelke R, Raffler J . Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun. 2017; 8:14357. PMC: 5333359. DOI: 10.1038/ncomms14357. View