» Articles » PMID: 24464287

Similarity Network Fusion for Aggregating Data Types on a Genomic Scale

Overview
Journal Nat Methods
Date 2014 Jan 28
PMID 24464287
Citations 686
Authors
Affiliations
Soon will be listed here.
Abstract

Recent technologies have made it cost-effective to collect diverse types of genome-wide data. Computational methods are needed to combine these data to create a comprehensive view of a given disease or a biological process. Similarity network fusion (SNF) solves this problem by constructing networks of samples (e.g., patients) for each available data type and then efficiently fusing these into one network that represents the full spectrum of underlying data. For example, to create a comprehensive view of a disease given a cohort of patients, SNF computes and fuses patient similarity networks obtained from each of their data types separately, taking advantage of the complementarity in the data. We used SNF to combine mRNA expression, DNA methylation and microRNA (miRNA) expression data for five cancer data sets. SNF substantially outperforms single data type analysis and established integrative approaches when identifying cancer subtypes and is effective for predicting survival.

Citing Articles

iModEst: disentangling -omic impacts on gene expression variation across genes and tissues.

Sokolowski D, Mai M, Verma A, Morgenshtern G, Subasri V, Naveed H NAR Genom Bioinform. 2025; 7(1):lqaf011.

PMID: 40041206 PMC: 11879402. DOI: 10.1093/nargab/lqaf011.


MOGAN for LUAD Subtype Classification by Integrating Three Omics Data Types.

He H, Wang L, Ma M Cancer Innov. 2025; 4(2):e160.

PMID: 40026873 PMC: 11868734. DOI: 10.1002/cai2.160.


KGRDR: a deep learning model based on knowledge graph and graph regularized integration for drug repositioning.

Luo H, Yang H, Zhang G, Wang J, Luo J, Yan C Front Pharmacol. 2025; 16:1525029.

PMID: 40008124 PMC: 11850324. DOI: 10.3389/fphar.2025.1525029.


Heterogeneous Clustering of Multiomics Data for Breast Cancer Subgroup Classification and Detection.

Pateras J, Lodi M, Rana P, Ghosh P Int J Mol Sci. 2025; 26(4).

PMID: 40004168 PMC: 11855380. DOI: 10.3390/ijms26041707.


Comprehensive Evaluation of Multi-Omics Clustering Algorithms for Cancer Molecular Subtyping.

Wang J, Wang L, Liu Y, Li X, Ma J, Li M Int J Mol Sci. 2025; 26(3).

PMID: 39940732 PMC: 11816650. DOI: 10.3390/ijms26030963.


References
1.
Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R . Missing value estimation methods for DNA microarrays. Bioinformatics. 2001; 17(6):520-5. DOI: 10.1093/bioinformatics/17.6.520. View

2.
Barabasi A . Network medicine--from obesity to the "diseasome". N Engl J Med. 2007; 357(4):404-7. DOI: 10.1056/NEJMe078114. View

3.
Margolin A, Bilal E, Huang E, Norman T, Ottestad L, Mecham B . Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer. Sci Transl Med. 2013; 5(181):181re1. PMC: 3897241. DOI: 10.1126/scitranslmed.3006112. View

4.
Sturm D, Witt H, Hovestadt V, Khuong-Quang D, Jones D, Konermann C . Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012; 22(4):425-37. DOI: 10.1016/j.ccr.2012.08.024. View

5.
Nigro J, Misra A, Zhang L, Smirnov I, Colman H, Griffin C . Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 2005; 65(5):1678-86. DOI: 10.1158/0008-5472.CAN-04-2921. View