» Articles » PMID: 32946445

GCN Sensitive Protein Translation in Yeast

Overview
Journal PLoS One
Date 2020 Sep 18
PMID 32946445
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Levels of protein translation by ribosomes are governed both by features of the translation machinery as well as sequence properties of the mRNAs themselves. We focus here on a striking three-nucleotide periodicity, characterized by overrepresentation of GCN codons and underrepresentation of G at the second position of codons, that is observed in Open Reading Frames (ORFs) of mRNAs. Our examination of mRNA sequences in Saccharomyces cerevisiae revealed that this periodicity is particularly pronounced in the initial codons-the ramp region-of ORFs of genes with high protein expression. It is also found in mRNA sequences immediately following non-standard AUG start sites, located upstream or downstream of the standard annotated start sites of genes. To explore the possible influences of the ramp GCN periodicity on translation efficiency, we tested edited ramps with accentuated or depressed periodicity in two test genes, SKN7 and HMT1. Greater conformance to (GCN)n was found to significantly depress translation, whereas disrupting conformance had neutral or positive effects on translation. Our recent Molecular Dynamics analysis of a subsystem of translocating ribosomes in yeast revealed an interaction surface that H-bonds to the +1 codon that is about to enter the ribosome decoding center A site. The surface, comprised of 16S/18S rRNA C1054 and A1196 (E. coli numbering) and R146 of ribosomal protein Rps3, preferentially interacts with GCN codons, and we hypothesize that modulation of this mRNA-ribosome interaction may underlie GCN-mediated regulation of protein translation. Integration of our expression studies with large-scale reporter studies of ramp sequence variants suggests a model in which the C1054-A1196-R146 (CAR) interaction surface can act as both an accelerator and braking system for ribosome translation.

Citing Articles

GNN Codon Adjacency Tunes Protein Translation.

Sun J, Hwang P, Sakkas E, Zhou Y, Perez L, Dave I Int J Mol Sci. 2024; 25(11).

PMID: 38892101 PMC: 11172435. DOI: 10.3390/ijms25115914.


GCNFORMER: graph convolutional network and transformer for predicting lncRNA-disease associations.

Yao D, Li B, Zhan X, Zhan X, Yu L BMC Bioinformatics. 2024; 25(1):5.

PMID: 38166659 PMC: 10763317. DOI: 10.1186/s12859-023-05625-1.


The CAR-mRNA Interaction Surface Is a Zipper Extension of the Ribosome A Site.

Dalgarno C, Scopino K, Raval M, Nachmanoff C, Sakkas E, Krizanc D Int J Mol Sci. 2022; 23(3).

PMID: 35163343 PMC: 8835751. DOI: 10.3390/ijms23031417.


Arginine Methylation Regulates Ribosome CAR Function.

Scopino K, Dalgarno C, Nachmanoff C, Krizanc D, Thayer K, Weir M Int J Mol Sci. 2021; 22(3).

PMID: 33572867 PMC: 7866298. DOI: 10.3390/ijms22031335.


A Ribosome Interaction Surface Sensitive to mRNA GCN Periodicity.

Scopino K, Williams E, Elsayed A, Barr W, Krizanc D, Thayer K Biomolecules. 2020; 10(6).

PMID: 32503152 PMC: 7357141. DOI: 10.3390/biom10060849.

References
1.
Buchanan B, Lloyd M, Engle S, Rubenstein E . Cycloheximide Chase Analysis of Protein Degradation in Saccharomyces cerevisiae. J Vis Exp. 2016; (110). PMC: 4941941. DOI: 10.3791/53975. View

2.
Ghaemmaghami S, Huh W, Bower K, Howson R, Belle A, Dephoure N . Global analysis of protein expression in yeast. Nature. 2003; 425(6959):737-41. DOI: 10.1038/nature02046. View

3.
Young B, Weiss D, Zurita-Lopez C, Webb K, Clarke S, McBride A . Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. Biochemistry. 2012; 51(25):5091-104. PMC: 3383884. DOI: 10.1021/bi300186g. View

4.
Ingolia N, Ghaemmaghami S, Newman J, Weissman J . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009; 324(5924):218-23. PMC: 2746483. DOI: 10.1126/science.1168978. View

5.
Gamble C, Brule C, Dean K, Fields S, Grayhack E . Adjacent Codons Act in Concert to Modulate Translation Efficiency in Yeast. Cell. 2016; 166(3):679-690. PMC: 4967012. DOI: 10.1016/j.cell.2016.05.070. View