» Articles » PMID: 32885720

Measurement and Standardization Challenges for Extracellular Vesicle Therapeutic Delivery Vectors

Overview
Specialty Biotechnology
Date 2020 Sep 5
PMID 32885720
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Extracellular vesicles (EVs), such as exosomes and microvesicles, are nonreplicating lipid bilayer particles shed by most cell types which have the potential to revolutionize the development and efficient delivery of clinical therapeutics. This article provides an introduction to the landscape of EV-based vectors under development for the delivery of protein- and nucleic acid-based therapeutics. We highlight some of the most pressing measurement and standardization challenges that limit the translation of EVs to the clinic. Current challenges limiting development of EVs for drug delivery are the lack of: standardized cell-based platforms for the production of EV-based therapeutics; EV reference materials that allow researchers/manufacturers to validate EV measurements and standardized measurement systems for determining the molecular composition of EVs.

Citing Articles

Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia.

Ravi Mythili V, Rajendran R, Arun R, Loganathbabu V, Reyaz D, Nagarajan A Bioengineering (Basel). 2025; 12(1).

PMID: 39851366 PMC: 11762151. DOI: 10.3390/bioengineering12010092.


Corneal Treatment, Repair, and Regeneration: Exosomes at Rescue.

Robbins B, Montreuil K, Kundu N, Kumar P, Agrahari V Pharmaceutics. 2024; 16(11).

PMID: 39598547 PMC: 11597686. DOI: 10.3390/pharmaceutics16111424.


Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles.

Kowkabany G, Bao Y Molecules. 2024; 29(19).

PMID: 39407601 PMC: 11477862. DOI: 10.3390/molecules29194672.


Potential Therapeutic Application and Mechanism of Action of Stem Cell-Derived Extracellular Vesicles (EVs) in Systemic Lupus Erythematosus (SLE).

Rajeev Kumar S, Sakthiswary R, Lokanathan Y Int J Mol Sci. 2024; 25(4).

PMID: 38397121 PMC: 10889333. DOI: 10.3390/ijms25042444.


Preparation of Nanoparticle-Loaded Extracellular Vesicles Using Direct Flow Filtration.

Mansur S, Habib S, Hawkins M, Brown S, Weinman S, Bao Y Pharmaceutics. 2023; 15(5).

PMID: 37242792 PMC: 10221999. DOI: 10.3390/pharmaceutics15051551.


References
1.
Murphy D, de Jong O, Brouwer M, Wood M, Lavieu G, Schiffelers R . Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp Mol Med. 2019; 51(3):1-12. PMC: 6418170. DOI: 10.1038/s12276-019-0223-5. View

2.
Dubochet J . Cryo-EM--the first thirty years. J Microsc. 2012; 245(3):221-4. DOI: 10.1111/j.1365-2818.2011.03569.x. View

3.
Kulp A, Kuehn M . Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010; 64:163-84. PMC: 3525469. DOI: 10.1146/annurev.micro.091208.073413. View

4.
Yamashita T, Takahashi Y, Takakura Y . Possibility of Exosome-Based Therapeutics and Challenges in Production of Exosomes Eligible for Therapeutic Application. Biol Pharm Bull. 2018; 41(6):835-842. DOI: 10.1248/bpb.b18-00133. View

5.
El Andaloussi S, Mager I, Breakefield X, Wood M . Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013; 12(5):347-57. DOI: 10.1038/nrd3978. View