» Articles » PMID: 32858900

The Maintenance of Mitochondrial DNA Integrity and Dynamics by Mitochondrial Membranes

Overview
Journal Life (Basel)
Specialty Biology
Date 2020 Aug 30
PMID 32858900
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondria are complex organelles that harbour their own genome. Mitochondrial DNA (mtDNA) exists in the form of a circular double-stranded DNA molecule that must be replicated, segregated and distributed around the mitochondrial network. Human cells typically possess between a few hundred and several thousand copies of the mitochondrial genome, located within the mitochondrial matrix in close association with the cristae ultrastructure. The organisation of mtDNA around the mitochondrial network requires mitochondria to be dynamic and undergo both fission and fusion events in coordination with the modulation of cristae architecture. The dysregulation of these processes has profound effects upon mtDNA replication, manifesting as a loss of mtDNA integrity and copy number, and upon the subsequent distribution of mtDNA around the mitochondrial network. Mutations within genes involved in mitochondrial dynamics or cristae modulation cause a wide range of neurological disorders frequently associated with defects in mtDNA maintenance. This review aims to provide an understanding of the biological mechanisms that link mitochondrial dynamics and mtDNA integrity, as well as examine the interplay that occurs between mtDNA, mitochondrial dynamics and cristae structure.

Citing Articles

The neuroimmune nexus: unraveling the role of the mtDNA-cGAS-STING signal pathway in Alzheimer's disease.

Quan S, Fu X, Cai H, Ren Z, Xu Y, Jia L Mol Neurodegener. 2025; 20(1):25.

PMID: 40038765 PMC: 11877805. DOI: 10.1186/s13024-025-00815-2.


Alteration of mitochondrial function in arthropods during arboviruses infection: a review of the literature.

Santana-Roman M, Ramirez-Carreto S, Maycotte P, Pando-Robles V Front Physiol. 2025; 16:1507059.

PMID: 40017802 PMC: 11865064. DOI: 10.3389/fphys.2025.1507059.


Vascular endothelial cell injury: causes, molecular mechanisms, and treatments.

Xia T, Yu J, Du M, Chen X, Wang C, Li R MedComm (2020). 2025; 6(2):e70057.

PMID: 39931738 PMC: 11809559. DOI: 10.1002/mco2.70057.


Protein moonlighting by a target gene dominates phenotypic divergence of the Sef1 transcriptional regulatory network in yeasts.

Hsu P, Lu T, Hung P, Leu J Nucleic Acids Res. 2024; 52(22):13914-13930.

PMID: 39565215 PMC: 11662654. DOI: 10.1093/nar/gkae1147.


Mitochondrial dysfunction in acute kidney injury.

Yao C, Li Z, Sun K, Zhang Y, Shou S, Jin H Ren Fail. 2024; 46(2):2393262.

PMID: 39192578 PMC: 11360640. DOI: 10.1080/0886022X.2024.2393262.


References
1.
Li H, Ruan Y, Zhang K, Jian F, Hu C, Miao L . Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. Cell Death Differ. 2015; 23(3):380-92. PMC: 5072434. DOI: 10.1038/cdd.2015.102. View

2.
Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko G, Rudka T . OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006; 126(1):177-89. DOI: 10.1016/j.cell.2006.06.025. View

3.
Martins de Brito O, Scorrano L . Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008; 456(7222):605-10. DOI: 10.1038/nature07534. View

4.
Harel T, Yoon W, Garone C, Gu S, Coban-Akdemir Z, Eldomery M . Recurrent De Novo and Biallelic Variation of ATAD3A, Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes. Am J Hum Genet. 2016; 99(4):831-845. PMC: 5065660. DOI: 10.1016/j.ajhg.2016.08.007. View

5.
Koob S, Barrera M, Anand R, Reichert A . The non-glycosylated isoform of MIC26 is a constituent of the mammalian MICOS complex and promotes formation of crista junctions. Biochim Biophys Acta. 2015; 1853(7):1551-63. DOI: 10.1016/j.bbamcr.2015.03.004. View