» Articles » PMID: 32732917

Inferring Disease Subtypes from Clusters in Explanation Space

Overview
Journal Sci Rep
Specialty Science
Date 2020 Aug 1
PMID 32732917
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Identification of disease subtypes and corresponding biomarkers can substantially improve clinical diagnosis and treatment selection. Discovering these subtypes in noisy, high dimensional biomedical data is often impossible for humans and challenging for machines. We introduce a new approach to facilitate the discovery of disease subtypes: Instead of analyzing the original data, we train a diagnostic classifier (healthy vs. diseased) and extract instance-wise explanations for the classifier's decisions. The distribution of instances in the explanation space of our diagnostic classifier amplifies the different reasons for belonging to the same class-resulting in a representation that is uniquely useful for discovering latent subtypes. We compare our ability to recover subtypes via cluster analysis on model explanations to classical cluster analysis on the original data. In multiple datasets with known ground-truth subclasses, particularly on UK Biobank brain imaging data and transcriptome data from the Cancer Genome Atlas, we show that cluster analysis on model explanations substantially outperforms the classical approach. While we believe clustering in explanation space to be particularly valuable for inferring disease subtypes, the method is more general and applicable to any kind of sub-type identification.

Citing Articles

Unlocking the potential of big data and AI in medicine: insights from biobanking.

Akyuz K, Abadia M, Goisauf M, Mayrhofer M Front Med (Lausanne). 2024; 11:1336588.

PMID: 38357641 PMC: 10864616. DOI: 10.3389/fmed.2024.1336588.


Phenomics and Robust Multiomics Data for Cardiovascular Disease Subtyping.

Maiorino E, Loscalzo J Arterioscler Thromb Vasc Biol. 2023; 43(7):1111-1123.

PMID: 37226730 PMC: 10330619. DOI: 10.1161/ATVBAHA.122.318892.


Predicting criminal and violent outcomes in psychiatry: a meta-analysis of diagnostic accuracy.

Watts D, de Azevedo Cardoso T, Librenza-Garcia D, Ballester P, Passos I, Kessler F Transl Psychiatry. 2022; 12(1):470.

PMID: 36347838 PMC: 9643469. DOI: 10.1038/s41398-022-02214-3.


A Survey on the Role of Artificial Intelligence in Biobanking Studies: A Systematic Review.

Battineni G, Hossain M, Chintalapudi N, Amenta F Diagnostics (Basel). 2022; 12(5).

PMID: 35626333 PMC: 9140088. DOI: 10.3390/diagnostics12051179.


Multi-scale semi-supervised clustering of brain images: Deriving disease subtypes.

Wen J, Varol E, Sotiras A, Yang Z, Chand G, Erus G Med Image Anal. 2021; 75:102304.

PMID: 34818611 PMC: 8678373. DOI: 10.1016/j.media.2021.102304.

References
1.
Davies D, Bouldin D . A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. 2011; 1(2):224-7. View

2.
Bzdok D, Nichols T, Smith S . Towards Algorithmic Analytics for Large-scale Datasets. Nat Mach Intell. 2019; 1(7):296-306. PMC: 6837858. DOI: 10.1038/s42256-019-0069-5. View

3.
Miller K, Alfaro-Almagro F, Bangerter N, Thomas D, Yacoub E, Xu J . Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci. 2016; 19(11):1523-1536. PMC: 5086094. DOI: 10.1038/nn.4393. View

4.
Tenenbaum J, De Silva V, Langford J . A global geometric framework for nonlinear dimensionality reduction. Science. 2000; 290(5500):2319-23. DOI: 10.1126/science.290.5500.2319. View

5.
Mottron L, Bzdok D . Autism spectrum heterogeneity: fact or artifact?. Mol Psychiatry. 2020; 25(12):3178-3185. PMC: 7714694. DOI: 10.1038/s41380-020-0748-y. View