» Articles » PMID: 21868852

A Cluster Separation Measure

Overview
Date 2011 Aug 27
PMID 21868852
Citations 631
Authors
Affiliations
Soon will be listed here.
Abstract

A measure is presented which indicates the similarity of clusters which are assumed to have a data density which is a decreasing function of distance from a vector characteristic of the cluster. The measure can be used to infer the appropriateness of data partitions and can therefore be used to compare relative appropriateness of various divisions of the data. The measure does not depend on either the number of clusters analyzed nor the method of partitioning of the data and can be used to guide a cluster seeking algorithm.

Citing Articles

A foundation model for generalizable cancer diagnosis and survival prediction from histopathological images.

Yang Z, Wei T, Liang Y, Yuan X, Gao R, Xia Y Nat Commun. 2025; 16(1):2366.

PMID: 40064883 PMC: 11894166. DOI: 10.1038/s41467-025-57587-y.


Gene expression knowledge graph for patient representation and diabetes prediction.

Sousa R, Paulheim H J Biomed Semantics. 2025; 16(1):2.

PMID: 40057806 PMC: 11889825. DOI: 10.1186/s13326-025-00325-6.


Point-of-interest recommender model using geo-tagged photos in accordance with imperialist Fuzzy C-means clustering.

Salehi Solaiman Abadi A, Khamforoosh K, Maihami V PLoS One. 2025; 20(3):e0317131.

PMID: 40053542 PMC: 11888138. DOI: 10.1371/journal.pone.0317131.


Uncovering hidden insights in the chair rise performance of older adults using Dynamic Time Warping and K-means clustering.

Meyer O, Diekmann R, Hellmers S, Hein A, Schumacher A Sci Rep. 2025; 15(1):7654.

PMID: 40038392 PMC: 11880401. DOI: 10.1038/s41598-025-91015-x.


BCG therapy for bladder cancer: Exploring patient experiences and concerns through artificial intelligence-based social media analysis.

Khene Z, Tachibana I, Bhanvadia R, Ausmann H, Margulis V, Lotan Y Bladder Cancer. 2025; 10(4):290-299.

PMID: 40035077 PMC: 11864235. DOI: 10.1177/23523735241304907.