» Articles » PMID: 32732914

Purine Metabolism Regulates DNA Repair and Therapy Resistance in Glioblastoma

Abstract

Intratumoral genomic heterogeneity in glioblastoma (GBM) is a barrier to overcoming therapy resistance. Treatments that are effective independent of genotype are urgently needed. By correlating intracellular metabolite levels with radiation resistance across dozens of genomically-distinct models of GBM, we find that purine metabolites, especially guanylates, strongly correlate with radiation resistance. Inhibiting GTP synthesis radiosensitizes GBM cells and patient-derived neurospheres by impairing DNA repair. Likewise, administration of exogenous purine nucleosides protects sensitive GBM models from radiation by promoting DNA repair. Neither modulating pyrimidine metabolism nor purine salvage has similar effects. An FDA-approved inhibitor of GTP synthesis potentiates the effects of radiation in flank and orthotopic patient-derived xenograft models of GBM. High expression of the rate-limiting enzyme of de novo GTP synthesis is associated with shorter survival in GBM patients. These findings indicate that inhibiting purine synthesis may be a promising strategy to overcome therapy resistance in this genomically heterogeneous disease.

Citing Articles

Targeting metabolic reprogramming in glioblastoma as a new strategy to overcome therapy resistance.

DAprile S, Denaro S, Gervasi A, Vicario N, Parenti R Front Cell Dev Biol. 2025; 13:1535073.

PMID: 40078366 PMC: 11897528. DOI: 10.3389/fcell.2025.1535073.


ACSS2 drives senescence-associated secretory phenotype by limiting purine biosynthesis through PAICS acetylation.

Yang L, You J, Yang X, Jiao R, Xu J, Zhang Y Nat Commun. 2025; 16(1):2071.

PMID: 40021646 PMC: 11871226. DOI: 10.1038/s41467-025-57334-3.


Metabolic pathways of Alternative Lengthening of Telomeres in pan-carcinoma.

Armendariz-Castillo I, Garcia-Cardenas J, Espinosa P, Hidalgo-Fernandez K, Pena-Zuniga L, Martinez R PLoS One. 2025; 20(2):e0314012.

PMID: 39982908 PMC: 11845024. DOI: 10.1371/journal.pone.0314012.


Investigating the relevance of nucleotide metabolism in the prognosis of glioblastoma through bioinformatics models.

Jiang L, Li Z, Ji X, Jiang T, Wang X, Weng C Sci Rep. 2025; 15(1):5363.

PMID: 39948153 PMC: 11825681. DOI: 10.1038/s41598-025-88970-w.


Boric acid impedes glioblastoma growth in a rat model: insights from multi-approach analysis.

Turkez H, Alper F, Bayram C, Baba C, Yildiz E, Saracoglu M Med Oncol. 2025; 42(2):47.

PMID: 39821858 PMC: 11742329. DOI: 10.1007/s12032-025-02600-z.


References
1.
Brennan C, Verhaak R, McKenna A, Campos B, Noushmehr H, Salama S . The somatic genomic landscape of glioblastoma. Cell. 2013; 155(2):462-77. PMC: 3910500. DOI: 10.1016/j.cell.2013.09.034. View

2.
Raizer J, Abrey L, Lassman A, Chang S, Lamborn K, Kuhn J . A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol. 2010; 12(1):95-103. PMC: 2940554. DOI: 10.1093/neuonc/nop015. View

3.
Pitz M, Eisenhauer E, MacNeil M, Thiessen B, Easaw J, Macdonald D . Phase II study of PX-866 in recurrent glioblastoma. Neuro Oncol. 2015; 17(9):1270-4. PMC: 4588751. DOI: 10.1093/neuonc/nou365. View

4.
Lassman A, Pugh S, Gilbert M, Aldape K, Geinoz S, Beumer J . Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro Oncol. 2015; 17(7):992-8. PMC: 5762006. DOI: 10.1093/neuonc/nov011. View

5.
Chinnaiyan P, Won M, Wen P, Rojiani A, Werner-Wasik M, Shih H . A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913. Neuro Oncol. 2017; 20(5):666-673. PMC: 5892159. DOI: 10.1093/neuonc/nox209. View