» Articles » PMID: 32671206

Long-distance Optical Pulling of Nanoparticle in a Low Index Cavity Using a Single Plane Wave

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2020 Jul 17
PMID 32671206
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Optical pulling force (OPF) can make a nanoparticle (NP) move against the propagation direction of the incident light. Long-distance optical pulling is highly desired for nano-object manipulation, but its realization remains challenging. We propose an NP-in-cavity structure that can be pulled by a single plane wave to travel long distances when the spherical cavity wrapping the NP has a refractive index lower than the medium. An electromagnetic multipole analysis shows that NPs made of many common materials can receive the OPF inside a lower index cavity. Using a silica-Au core-shell NP that is encapsulated by a plasmonic nanobubble, we experimentally demonstrate that a single laser can pull the Au NP-in-nanobubble structure for ~0.1 mm. These results may lead to practical applications that can use the optical pulling of NP, such as optically driven nanostructure assembly and nanoswimmers.

Citing Articles

Topologically protected optical pulling force on synthetic particles through photonic nanojet.

Ren Y, Frueh J, Zhang Z, Rutkowski S, Zhou Y, Mao H Nanophotonics. 2024; 13(2):239-249.

PMID: 39635297 PMC: 11501283. DOI: 10.1515/nanoph-2023-0740.


Negative optical force field on supercavitating titanium nitride nanoparticles by a single plane wave.

Lee E, Luo T Nanophotonics. 2024; 11(1):79-86.

PMID: 39635001 PMC: 11501752. DOI: 10.1515/nanoph-2021-0503.


Morphology-independent general-purpose optical surface tractor beam.

Wang N, Ng J, Wang G Nat Commun. 2024; 15(1):6836.

PMID: 39122709 PMC: 11315692. DOI: 10.1038/s41467-024-51100-7.


On chip all-optical distinguishing of independently placed distinct types of single Rayleigh particle.

Shoshi J, Mahdy M, Rana M Heliyon. 2024; 10(5):e26722.

PMID: 38434299 PMC: 10906440. DOI: 10.1016/j.heliyon.2024.e26722.


Optothermal rotation of micro-/nano-objects.

Ding H, Chen Z, Ponce C, Zheng Y Chem Commun (Camb). 2023; 59(16):2208-2221.

PMID: 36723196 PMC: 10189788. DOI: 10.1039/d2cc06955e.


References
1.
Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, Drezek R . Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano. 2010; 4(4):2109-23. PMC: 2860665. DOI: 10.1021/nn1000222. View

2.
Evlyukhin A, Novikov S, Zywietz U, Eriksen R, Reinhardt C, Bozhevolnyi S . Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 2012; 12(7):3749-55. DOI: 10.1021/nl301594s. View

3.
Damkova J, Chvatal L, Jezek J, Oulehla J, Brzobohaty O, Zemanek P . Enhancement of the 'tractor-beam' pulling force on an optically bound structure. Light Sci Appl. 2019; 7:17135. PMC: 6107043. DOI: 10.1038/lsa.2017.135. View

4.
Mizrahi A, Fainman Y . Negative radiation pressure on gain medium structures. Opt Lett. 2010; 35(20):3405-7. DOI: 10.1364/OL.35.003405. View

5.
Xuan M, Wu Z, Shao J, Dai L, Si T, He Q . Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. J Am Chem Soc. 2016; 138(20):6492-7. DOI: 10.1021/jacs.6b00902. View